论文标题

非处方信用默认交换市场的竞争分析

Competition analysis on the over-the-counter credit default swap market

论文作者

Abraham, Louis

论文摘要

我们使用作为Emir法规的一部分收集的数据研究了与OTC CD市场竞争有关的两个问题。 首先,我们通过抵押要求研究中央对手之间的竞争。我们提出了成功估计初始保证金要求的模型。但是,我们的估计不够精确,无法将其用作OTC市场中交易对手选择CCP选择的预测模型的输入。 其次,我们使用新颖的半监督预测任务在交叉市场上进行选择。在主张使用条件熵作为通过模型 - 不合SNOSTIC方法从数据中获取知识的指标之前,我们将方法作为模型可解释性的文献的一部分介绍。特别是,我们证明使用深神经网络来测量现实世界数据集上的条件熵。我们使用算法信息理论的框架创建$ \ textit {Razor Entropy} $,并得出明确的公式,该公式与我们的半监督培训目标相同。最后,我们从游戏理论借用概念来定义$ \ textit {top-k shapley values} $。这种新颖的回报分布方法满足了莎普利值的大多数属性,并且当值函数是单调的,并且特别感兴趣。与经典的沙普利值不同,可以在特征数量的二次时间内计算出Top-K Shapley值,而不是指数。我们实施我们的方法论,并报告有关我们特定的对手选择任务的结果。 最后,我们提出了$ \ textit {node2vec} $算法的改进,例如,该算法可用于进一步研究中介。我们表明,与当前无法很好地扩展的当前实现不同,可以在对数时间内使用偏置步行的邻居抽样进行对数。

We study two questions related to competition on the OTC CDS market using data collected as part of the EMIR regulation. First, we study the competition between central counterparties through collateral requirements. We present models that successfully estimate the initial margin requirements. However, our estimations are not precise enough to use them as input to a predictive model for CCP choice by counterparties in the OTC market. Second, we model counterpart choice on the interdealer market using a novel semi-supervised predictive task. We present our methodology as part of the literature on model interpretability before arguing for the use of conditional entropy as the metric of interest to derive knowledge from data through a model-agnostic approach. In particular, we justify the use of deep neural networks to measure conditional entropy on real-world datasets. We create the $\textit{Razor entropy}$ using the framework of algorithmic information theory and derive an explicit formula that is identical to our semi-supervised training objective. Finally, we borrow concepts from game theory to define $\textit{top-k Shapley values}$. This novel method of payoff distribution satisfies most of the properties of Shapley values, and is of particular interest when the value function is monotone submodular. Unlike classical Shapley values, top-k Shapley values can be computed in quadratic time of the number of features instead of exponential. We implement our methodology and report the results on our particular task of counterpart choice. Finally, we present an improvement to the $\textit{node2vec}$ algorithm that could for example be used to further study intermediation. We show that the neighbor sampling used in the generation of biased walks can be performed in logarithmic time with a quasilinear time pre-computation, unlike the current implementations that do not scale well.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源