论文标题

网络物理生产系统中CAAI的认知能力

Cognitive Capabilities for the CAAI in Cyber-Physical Production Systems

论文作者

Strohschein, Jan, Fischbach, Andreas, Bunte, Andreas, Faeskorn-Woyke, Heide, Moriz, Natalia, Bartz-Beielstein, Thomas

论文摘要

本文介绍了网络物理生产系统(CPPS)中人工智能认知结构(CAAI)的认知模块。该体系结构的目的是减少CPP中人工智能(AI)算法的实施工作。声明性用户目标和提供的算法知识基础允许动态管道编排和配置。大数据平台(BDP)实例化管道并监视CPPS性能,以通过认知模块进行进一步评估。因此,在不同用例中,认知模块能够为过程管道选择可行且可靠的配置。此外,它会根据模型质量和资源消耗自动调整模型和算法。认知模块还实例化其他管道以测试来自不同类别的算法。 CAAI依靠定义明确的接口来集成其他模块并减少实施工作。最后,使用基于Docker,Kubernetes和Kafka的实施方式,用于单个模块的虚拟化和编排以及用于模块通信的消息传递技术,以评估现实世界中的用例。

This paper presents the cognitive module of the cognitive architecture for artificial intelligence (CAAI) in cyber-physical production systems (CPPS). The goal of this architecture is to reduce the implementation effort of artificial intelligence (AI) algorithms in CPPS. Declarative user goals and the provided algorithm-knowledge base allow the dynamic pipeline orchestration and configuration. A big data platform (BDP) instantiates the pipelines and monitors the CPPS performance for further evaluation through the cognitive module. Thus, the cognitive module is able to select feasible and robust configurations for process pipelines in varying use cases. Furthermore, it automatically adapts the models and algorithms based on model quality and resource consumption. The cognitive module also instantiates additional pipelines to test algorithms from different classes. CAAI relies on well-defined interfaces to enable the integration of additional modules and reduce implementation effort. Finally, an implementation based on Docker, Kubernetes, and Kafka for the virtualization and orchestration of the individual modules and as messaging-technology for module communication is used to evaluate a real-world use case.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源