论文标题

良好:循环中人类的美学图像增强

NICER: Aesthetic Image Enhancement with Humans in the Loop

论文作者

Fischer, Michael, Kobs, Konstantin, Hotho, Andreas

论文摘要

完全或半自动图像增强软件可帮助用户增加照片的视觉吸引力,并且不需要对手动图像编辑的深入了解。但是,完全自动化的方法通常以黑盒方式增强图像,该方式不会使用户对优化过程进行任何控制,这可能会导致编辑的图像,而这些图像对用户没有主观上诉。半自动方法主要允许采取哪种预定义的编辑步骤,这限制了用户的创造力和进行详细调整(例如亮度或对比度)的能力。我们认为,通过指导自动增强方法来整合用户偏好,简化了图像编辑,并增加了增强对用户的关注。因此,这项工作提出了神经图像校正和增强常规(NOCE),这是一种基于神经网络的方法,可在完全,半自动或完全手动过程中进行交互式和以用户为中心的完全,半自动或完全手动过程。更好地迭代调整图像编辑参数,以便基于图像样式和内容最大化美学得分。用户可以随时修改这些参数,并将优化过程指向所需方向。这种交互式工作流程是用于图像增强任务的人类计算机相互作用领域的新颖性。在用户研究中,我们表明,更好的是可以改善图像美学而无需用户互动,并且允许用户互动会导致多种增强结果,而这些结果比未经编辑的图像强烈首选。我们公开使用代码,以促进这一方向的进一步研究。

Fully- or semi-automatic image enhancement software helps users to increase the visual appeal of photos and does not require in-depth knowledge of manual image editing. However, fully-automatic approaches usually enhance the image in a black-box manner that does not give the user any control over the optimization process, possibly leading to edited images that do not subjectively appeal to the user. Semi-automatic methods mostly allow for controlling which pre-defined editing step is taken, which restricts the users in their creativity and ability to make detailed adjustments, such as brightness or contrast. We argue that incorporating user preferences by guiding an automated enhancement method simplifies image editing and increases the enhancement's focus on the user. This work thus proposes the Neural Image Correction & Enhancement Routine (NICER), a neural network based approach to no-reference image enhancement in a fully-, semi-automatic or fully manual process that is interactive and user-centered. NICER iteratively adjusts image editing parameters in order to maximize an aesthetic score based on image style and content. Users can modify these parameters at any time and guide the optimization process towards a desired direction. This interactive workflow is a novelty in the field of human-computer interaction for image enhancement tasks. In a user study, we show that NICER can improve image aesthetics without user interaction and that allowing user interaction leads to diverse enhancement outcomes that are strongly preferred over the unedited image. We make our code publicly available to facilitate further research in this direction.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源