论文标题
有限的完全$ k $ cluped的群体
Finite totally $k$-closed groups
论文作者
论文摘要
对于一个正整数$ k $,如果在每个忠实的排列表示中,则$ g $完全限制为$ k $,例如在$ω$中,$ g $是$ \ operatatorname {sym}(sym}(sym}(ω)$)的最大亚组,它在$ g $ -orbits中都在$ g $ -orbits tere pocused time time time time time time time time k $ k $ k $ k $ k \ ocy of form.我们证明,每个Abelian Group $ g $都是完全$(n(g)+1)$ - 关闭,但并不完全是$ n(g)$ - 关闭,其中$ n(g)$是$ g $不变因子分解中不变因素的数量。特别是,我们证明,对于每个$ k \ geq2 $和每个prime $ p $,都有无限的有限的Abelian $ p $ groups,它们完全是$ k $ c的,但并非完全$ $(K-1)$ - 关闭。在特殊情况下,此结果$ k = 2 $归因于Abdollahi和Arezoomand。我们提出了几个关于$ k $ clubersus的公开问题。
For a positive integer $k$, a group $G$ is said to be totally $k$-closed if in each of its faithful permutation representations, say on a set $Ω$, $G$ is the largest subgroup of $\operatorname{Sym}(Ω)$ which leaves invariant each of the $G$-orbits in the induced action on $Ω\times\dots\times Ω=Ω^k$. We prove that every abelian group $G$ is totally $(n(G)+1)$-closed, but is not totally $n(G)$-closed, where $n(G)$ is the number of invariant factors in the invariant factor decomposition of $G$. In particular, we prove that for each $k\geq2$ and each prime $p$, there are infinitely many finite abelian $p$-groups which are totally $k$-closed but not totally $(k-1)$-closed. This result in the special case $k=2$ is due to Abdollahi and Arezoomand. We pose several open questions about total $k$-closure.