论文标题

与随机$ k $ body互动的平均场相互作用玻色子的波函数结构

Structure of wavefunction for interacting bosons in mean-field with random $k$-body interactions

论文作者

Rao, Priyanka, Chavda, N. D.

论文摘要

使用Hamiltonian $ h $分析了波函数结构,用于密集的相互作用多个玻璃系统,这是一体$ h(1)$的总和,嵌入了$ k $ - 体相互作用$ v(k)$,具有强度$λ$。在第一个分析中,得出了强度函数方差的完整分析描述,作为$λ$和$ k $的函数,并获得了标记$λ_t$定义热化区域的标记。在强耦合极限($λ>λ_t$)中,条件$ q $ - 正常密度描述了高斯到半圆形的强度函数,因为人体等级$ k $ k $的相互作用增加。在第二个分析中,强度函数的这种插值形式被用来描述$ k $ - 体相互作用淬灭后的忠诚度衰变,并为主成分数量获得平滑形式,这是有限相互作用的多粒子系统中混乱的度量。流畅的表单非常描述了所有$ k $值的嵌入式集合结果。

Wavefunction structure is analyzed for dense interacting many-boson systems using Hamiltonian $H$, which is a sum of one-body $h(1)$ and an embedded GOE of $k$-body interaction $V(k)$ with strength $λ$. In the first analysis, a complete analytical description of the variance of the strength function as a function of $λ$ and $k$ is derived and the marker $λ_t$ defining thermalization region is obtained. In the strong coupling limit ($λ> λ_t$), the conditional $q$-normal density describes Gaussian to semi-circle transition in strength functions as body rank $k$ of the interaction increases. In the second analysis, this interpolating form of the strength function is utilized to describe the fidelity decay after $k$-body interaction quench and also to obtain the smooth form for the number of principal components, a measure of chaos in finite interacting many-particle systems. The smooth form very well describes embedded ensemble results for all $k$ values.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源