论文标题

域适应不完整的目标域

Domain Adaptation with Incomplete Target Domains

论文作者

Li, Zhenpeng, Jiang, Jianan, Guo, Yuhong, Tang, Tiantian, Zhuo, Chengxiang, Ye, Jieping

论文摘要

域的适应性是通过在辅助源域中利用现有标记的数据来降低目标域中的注释成本的任务,在研究社区中受到了很多关注。但是,标准域的适应性已经在两个域中都假定了完美观察到的数据,而在现实世界应用中,存在丢失的数据的存在可能很普遍。在本文中,我们解决了一个更具挑战性的域适应情景,其中一个人具有一个不完整的目标域,其中有部分观察到的数据。我们提出了一个不完整的基于数据插补的对抗网络(IDIAN)模型,以应对这种新的域适应性挑战。在提出的模型中,我们设计了一个数据插补模块,以基于目标域中的部分观测值填充缺失的特征值,同时通过深层对抗性适应对两个域对齐。我们对跨域基准任务和具有不完美目标域的现实世界适应任务进行实验。实验结果证明了该方法的有效性。

Domain adaptation, as a task of reducing the annotation cost in a target domain by exploiting the existing labeled data in an auxiliary source domain, has received a lot of attention in the research community. However, the standard domain adaptation has assumed perfectly observed data in both domains, while in real world applications the existence of missing data can be prevalent. In this paper, we tackle a more challenging domain adaptation scenario where one has an incomplete target domain with partially observed data. We propose an Incomplete Data Imputation based Adversarial Network (IDIAN) model to address this new domain adaptation challenge. In the proposed model, we design a data imputation module to fill the missing feature values based on the partial observations in the target domain, while aligning the two domains via deep adversarial adaption. We conduct experiments on both cross-domain benchmark tasks and a real world adaptation task with imperfect target domains. The experimental results demonstrate the effectiveness of the proposed method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源