论文标题
两种模式损耗腔中的连续变化纠缠:精确的解决方案
Continuous-variable entanglement in a two-mode lossy cavity: an exact solution
论文作者
论文摘要
连续变量(CV)纠缠是量子信息领域中的宝贵资源。 CV纠缠的一种来源是在两种模式挤压的光状态下光子的位置和动量之间的相关性。在本文中,我们从理论上通过自发参数下调(SPDC)研究了挤压状态的产生,在用经典的光脉冲泵送的两型损耗腔内。使用Lindblad Master方程对空腔中的密度算子的动力学进行建模,我们表明该模型的精确解决方案是两种模式挤压热状态的密度算子,每种模式的时间依赖性挤压幅度和平均热光子数。我们得出了腔体内最大纠缠的表达式,该表达式取决于两种模式之间损耗的差异。我们将精确的解决方案应用于用高斯脉冲泵送的微区谐振器的重要示例。我们得出的表达将帮助研究人员优化有损耗的腔内简历纠缠。
Continuous-variable (CV) entanglement is a valuable resource in the field of quantum information. One source of CV entanglement is the correlations between the position and momentum of photons in a two-mode squeezed state of light. In this paper, we theoretically study the generation of squeezed states, via spontaneous parametric downconversion (SPDC), inside a two-mode lossy cavity that is pumped with a classical optical pulse. The dynamics of the density operator in the cavity is modelled using the Lindblad master equation, and we show that the exact solution to this model is the density operator for a two-mode squeezed thermal state, with a time-dependent squeezing amplitude and average thermal photon number for each mode. We derive an expression for the maximum entanglement inside the cavity that depends crucially on the difference in the losses between the two modes. We apply our exact solution to the important example of a microring resonator that is pumped with a Gaussian pulse. The expressions that we derive will help researchers optimize CV entanglement in lossy cavities.