论文标题

全态$ \ mathbb {c}^*$ - 动作的线性化性的表征

A characterization of linearizability for holomorphic $\mathbb{C}^*$-actions

论文作者

Kutzschebauch, Frank, Schwarz, Gerald W.

论文摘要

令$ g $为一个还原的复杂谎言组,在$ x = \ mathbb {c}^n $上进行全体形式。 (HOLOMORTHIC)线性化问题询问$ \ Mathbb {C}^n $上的坐标发生变化,以使$ g $ -Action变为线性。同等地,是否有$ g $ equivariant Biholomormormormormormormormormormormormormormorming $φ\ COLON X \ to V $,其中$ v $是$ g $ -module?分类商$ x /\! /g $的内在分层称为Luna分层,该地层由$ G $还原亚组的同构表示的同构标记。假设上面有$φ$。然后,$φ$诱导了biholomormormormormormormormormormormorim $ ϕ \ colon x/\!/g \ to v/\!/g $,即分层,即带有给定标签的$ x/\!/g $的阶层是同构发送给$ v/\!/g $带有同一标签的阶层。 线性化问题的反例构建了$ g $的动作,以使$ x/\!/g $均未将Biholomormormormorphic分类为任何$ v/\!/g $。我们的主要定理表明,对于$ g^0 = \ mathbb {c}^*$的还原组$ g $,存在$ x/\!/g $的分层生物形态的存在,不仅是$ v/\!/g $,不仅是必要的,而且还足以进行线性化。实际上,我们不必假设$ x $是biholomorphic to $ \ mathbb {c}^n $,只有$ x $是stein歧管。

Let $G$ be a reductive complex Lie group acting holomorphically on $X=\mathbb{C}^n$. The (holomorphic) Linearization Problem asks if there is a holomorphic change of coordinates on $\mathbb{C}^n$ such that the $G$-action becomes linear. Equivalently, is there a $G$-equivariant biholomorphism $Φ\colon X\to V$ where $V$ is a $G$-module? There is an intrinsic stratification of the categorical quotient $X /\!/G$, called the Luna stratification, where the strata are labeled by isomorphism classes of representations of reductive subgroups of $G$. Suppose that there is a $Φ$ as above. Then $Φ$ induces a biholomorphism $ϕ\colon X/\!/G\to V/\!/G$ which is stratified, i.e., the stratum of $ X/\!/G$ with a given label is sent isomorphically to the stratum of $V/\!/G$ with the same label. The counterexamples to the Linearization Problem construct an action of $G$ such that $X/\!/G$ is not stratified biholomorphic to any $V/\!/G$. Our main theorem shows that, for a reductive group $G$ with $G^0=\mathbb{C}^*$, the existence of a stratified biholomorphism of $X/\!/G$ to some $V/\!/G$ is not only necessary but also sufficient for linearization. In fact, we do not have to assume that $X$ is biholomorphic to $\mathbb{C}^n$, only that $X$ is a Stein manifold.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源