论文标题
3D架构的各向同性材料具有可调刚度和屈曲强度
3D architected isotropic materials with tunable stiffness and buckling strength
论文作者
论文摘要
本文介绍了一类3D单尺度各向同性材料,具有可调刚度和通过拓扑优化和随后的形状优化获得的屈曲强度。与刚性最佳的闭孔板材材料相比,材料类别将年轻的模量从79%降低到58%,但将单轴屈曲强度提高到180%范围从180%到767%。基于较小的变形理论,使用均匀化方法评估材料刚度。使用线性屈曲分析估计给定的宏观应力状态下的屈曲强度,该分析具有块状边界条件,以捕获短和长波长屈曲模式。具有可调性能的3D各向同性单尺度材料是使用拓扑优化设计的,然后使用形状优化进一步简化。拓扑和形状优化的结果都表明,桁架与可变厚度板结构之间的杂种可以显着增强材料屈曲强度。
This paper presents a class of 3D single-scale isotropic materials with tunable stiffness and buckling strength obtained via topology optimization and subsequent shape optimization. Compared to stiffness-optimal closed-cell plate material, the material class reduces the Young's modulus to a range from 79% to 58%, but improves the uniaxial buckling strength to a range from 180% to 767%. Based on small deformation theory, material stiffness is evaluated using the homogenization method. Buckling strength under a given macroscopic stress state is estimated using linear buckling analysis with Block-Floquet boundary conditions to capture both short and long wavelength buckling modes. The 3D isotropic single-scale materials with tunable properties are designed using topology optimization, and are then further simplified using shape optimization. Both topology and shape optimized results demonstrate that material buckling strength can be significantly enhanced by hybrids between truss and variable thickness plate structures.