论文标题

线性系统的二进制输入重建:性能分析

Binary input reconstruction for linear systems: a performance analysis

论文作者

Fosson, Sophie M.

论文摘要

从其(嘈杂)输出中恢复时间差异线性系统的数字输入是数据传输,反卷积,通道均衡和反向建模领域的重大挑战。在过去的几十年中,为此目的开发了各种算法,涉及不同的模型和性能/复杂性要求。在本文中,我们实施了一种直接的算法,以重建具有已知概率属性的一维线性系统的二进制输入。尽管该算法次优,但该算法具有两个主要优点:它在线工作(鉴于当前的输出测量,它是解码当前输入位的),并且复杂性非常低。此外,我们可以从理论上分析其性能:使用概率度量,马尔可夫过程和迭代的随机函数的结果,我们根据均值正方形误差评估了其长期行为。

Recovering the digital input of a time-discrete linear system from its (noisy) output is a significant challenge in the fields of data transmission, deconvolution, channel equalization, and inverse modeling. A variety of algorithms have been developed for this purpose in the last decades, addressed to different models and performance/complexity requirements. In this paper, we implement a straightforward algorithm to reconstruct the binary input of a one-dimensional linear system with known probabilistic properties. Although suboptimal, this algorithm presents two main advantages: it works online (given the current output measurement, it decodes the current input bit) and has very low complexity. Moreover, we can theoretically analyze its performance: using results on convergence of probability measures, Markov Processes, and Iterated Random Functions we evaluate its long-time behavior in terms of mean square error.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源