论文标题
当在记忆依赖的迷宫导航任务上训练复发性神经网络时,海马表示
Hippocampal representations emerge when training recurrent neural networks on a memory dependent maze navigation task
论文作者
论文摘要
神经网络能否通过结合生物当前状态与未来行动的后果之间的关系来使用与大脑相似的策略来学习目标指导的行为?最近的工作表明,基于目标任务的经过培训的复发神经网络可以开发出类似于大脑中发现的表示的表示,例如,内嗅皮层网格细胞。在这里,我们探讨了其内部表示动态的演变,并将其与实验数据进行比较。我们观察到,一旦经过培训了一个经过培训的网络来仅基于感官预测来学习其环境的结构,该网络表示中的基于吸引子的景观形成,该景观在结构和功能中与海马的位置单元相吻合。接下来,我们将预测目标扩展到包括奖励任务的Q学习,其中奖励行动取决于延迟的提示调制。镜像在执行相同任务的啮齿动物中的海马记录中的实验发现,这种训练范式导致非局部神经活动在决策点向前扫入太空,预计未来的奖励位置路径。此外,该网络中形成了普遍的选择和提示选择性神经元,再次概括了实验发现。总之,这些结果表明,将环境结构的预测性,无监督的学习与增强学习结合在一起可以帮助理解包含空间和与任务相关信息的海马样形式的形成。
Can neural networks learn goal-directed behaviour using similar strategies to the brain, by combining the relationships between the current state of the organism and the consequences of future actions? Recent work has shown that recurrent neural networks trained on goal based tasks can develop representations resembling those found in the brain, entorhinal cortex grid cells, for instance. Here we explore the evolution of the dynamics of their internal representations and compare this with experimental data. We observe that once a recurrent network is trained to learn the structure of its environment solely based on sensory prediction, an attractor based landscape forms in the network's representation, which parallels hippocampal place cells in structure and function. Next, we extend the predictive objective to include Q-learning for a reward task, where rewarding actions are dependent on delayed cue modulation. Mirroring experimental findings in hippocampus recordings in rodents performing the same task, this training paradigm causes nonlocal neural activity to sweep forward in space at decision points, anticipating the future path to a rewarded location. Moreover, prevalent choice and cue-selective neurons form in this network, again recapitulating experimental findings. Together, these results indicate that combining predictive, unsupervised learning of the structure of an environment with reinforcement learning can help understand the formation of hippocampus-like representations containing both spatial and task-relevant information.