论文标题

双峰威布尔分布:属性和推理

A Bimodal Weibull Distribution: Properties and Inference

论文作者

Vila, Roberto, Çankaya, Mehmet Niyazi

论文摘要

建模是一个具有挑战性的主题,使用参数模型是达到建模灵活功能的重要阶段。 Weibull分布有两个参数,这些参数是$α$和比例$β$。在这项研究中,添加了双峰性参数,因此通过使用用于生成由于使用二次表达而产生的双峰函数的二次变换技术提出了双峰威布尔分布。 Weibull和二次形式的分析简单性通过构造归一化常数来得出双峰Weibull的优势。检查了所提出的分布的特征和特性,以显示其在建模方面的可用性。在作为建模问题的第一阶段进行检查之后,使用双峰威布尔对数据集进行建模是适当的。两种最大$ \ log_q $可能性及其特殊形式的估计方法(包括目标函数$ \ log_q(f)$和$ \ log(f)$用于估计功能的形状,比例和双峰参数的参数。通过使用启发式算法根据参数优化功能的第二阶段是通过基于随机优化的启发式算法进行的。提供实际数据集以显示拟议分布的建模能力。

Modeling is a challenging topic and using parametric models is an important stage to reach flexible function for modeling. Weibull distribution has two parameters which are shape $α$ and scale $β$. In this study, bimodality parameter is added and so bimodal Weibull distribution is proposed by using a quadratic transformation technique used to generate bimodal functions produced due to using the quadratic expression. The analytical simplicity of Weibull and quadratic form give an advantage to derive a bimodal Weibull via constructing normalizing constant. The characteristics and properties of the proposed distribution are examined to show its usability in modeling. After examination as first stage in modeling issue, it is appropriate to use bimodal Weibull for modeling data sets. Two estimation methods which are maximum $\log_q$ likelihood and its special form including objective functions $\log_q(f)$ and $\log(f)$ are used to estimate the parameters of shape, scale and bimodality parameters of the function. The second stage in modeling is overcome by using heuristic algorithm for optimization of function according to parameters due to fact that converging to global point of objective function is performed by heuristic algorithm based on the stochastic optimization. Real data sets are provided to show the modeling competence of the proposed distribution.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源