论文标题

粘性和热导电流体的相对论动力学中所有波数模式的衰减和subluminity

Decay and Subluminality of Modes of all Wave Numbers in the Relativistic Dynamics of Viscous and Heat Conductive Fluids

论文作者

Freistühler, Heinrich, Reintjes, Moritz, Temple, Blake

论文摘要

要进一步确认部分微分方程的二阶双曲系统的因果关系和稳定性,该系统模拟了用粘度和热传导的偏向性流体的相对论动态(H.Freistühler和B. Temple,J。Math。Phys。59(2018)),本文研究了这些系统的傅立叶模式,以相对的范围,以相对的范围,这些模式与所有模式相对范围。增加时间和(b)以跨流速度行驶。还显示了非肉食流体相关模型的稳定性(H.Freistühler和B.Temple。Proc。R.Soc。A470(2014)和Proc。R.Soc。A473(2017))。即使这些特性在数值证据的意义上已经知道了一段时间,但此处给出的任意框架中任意波数模式的subluminity的全面分析证明似乎是关于任何五个场合的差异相对性流体动力学的第一个。

To further confirm the causality and stability of a second-order hyperbolic system of partial differential equations that models the relativistic dynamics of barotropic fluids with viscosity and heat conduction (H. Freistühler and B. Temple, J. Math. Phys. 59 (2018)), this paper studies the Fourier-Laplace modes of this system and shows that all such modes, relative to arbitrary Lorentz frames, (a) decay with increasing time and (b) travel at subluminal speeds. Stability is also shown for the related model of non-barotropic fluids (H. Freistühler and B. Temple. Proc. R. Soc. A 470 (2014) and Proc. R. Soc. A 473 (2017)). Even though these properties had been known for a while in the sense of numerical evidence, the fully analytical proofs for the subluminality of modes of arbitrary wave numbers in arbitrary frames given here appear to be the first regarding any five-field formulation of dissipative relativistic fluid dynamics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源