论文标题
在奇异内部功能的衰减中
On the decay of singular inner functions
论文作者
论文摘要
众所周知,如果$ s(z)$是单位磁盘上定义的非恒定的单数内部函数,则$ \ min_ {| z | \ le r} | s(z)| \ to0 $ as a as $ r \ to1^ - $。我们表明,收敛可能是任意慢的。
It is known that, if $S(z)$ is a non-constant, singular inner function defined on the unit disk, then $\min_{|z|\le r}|S(z)|\to0$ as $r\to1^-$. We show that the convergence may be arbitrarily slow.