论文标题

Ising模型动态系统算法上的数学机制

Mathematical Mechanism on Dynamical System Algorithms of the Ising Model

论文作者

Liu, Bowen, Wang, Kaizhi, Xiao, Dongmei, Yu, Zhan

论文摘要

可以将各种组合优化的NP硬化问题降低为找到Ising模型的最小化器,这是一个离散的数学模型。开发一些用于解决ISING模型的数学工具或算法是一个智力挑战。在过去的几十年中,已经从物理,数学或计算观点提出了一些连续的方法或算法,以优化诸如量子退火,相干的Ising机器,模拟退火,绝热的汉密尔顿系统等的伊辛模型等。但是,这些算法的数学原则远非理解。在本文中,我们通过Morse理论和变异方法揭示了ISING模型的动态系统算法的数学机制。我们证明,可以设计动态系统算法是为了最大程度地减少连续函数,其局部最小点为ISING模型提供了所有候选,并且全局最小值给出了Ising问题的最小化器。使用这种数学机制,我们可以轻松理解Ising模型的几种动态系统算法,例如连贯的ISING机器,Kerr-Noninlinear参数振荡器和模拟分叉算法。此外,在C. conley的作品中,我们研究了模拟分叉算法的运输和捕获特性,以解释其通过低能运输和捕获天体力学中的收敛性。关于$ 2 $ -SPIN和$ 3 $ -SPIN ISING模型的详细讨论作为应用程序。

Various combinatorial optimization NP-hard problems can be reduced to finding the minimizer of an Ising model, which is a discrete mathematical model. It is an intellectual challenge to develop some mathematical tools or algorithms for solving the Ising model. Over the past decades, some continuous approaches or algorithms have been proposed from physical, mathematical or computational views for optimizing the Ising model such as quantum annealing, the coherent Ising machine, simulated annealing, adiabatic Hamiltonian systems, etc.. However, the mathematical principle of these algorithms is far from being understood. In this paper, we reveal the mathematical mechanism of dynamical system algorithms for the Ising model by Morse theory and variational methods. We prove that the dynamical system algorithms can be designed to minimize a continuous function whose local minimum points give all the candidates of the Ising model and the global minimum gives the minimizer of Ising problem. Using this mathematical mechanism, we can easily understand several dynamical system algorithms of the Ising model such as the coherent Ising machine, the Kerr-nonlinear parametric oscillators and the simulated bifurcation algorithm. Furthermore, motivated by the works of C. Conley, we study transit and capture properties of the simulated bifurcation algorithm to explain its convergence by the low energy transit and capture in celestial mechanics. A detailed discussion on $2$-spin and $3$-spin Ising models is presented as application.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源