论文标题

COVID-19患者中并发症的临床预测系统:开发和验证回顾性多中心研究

Clinical prediction system of complications among COVID-19 patients: a development and validation retrospective multicentre study

论文作者

Ghosheh, Ghadeer O., Alamad, Bana, Yang, Kai-Wen, Syed, Faisil, Hayat, Nasir, Iqbal, Imran, Kindi, Fatima Al, Junaibi, Sara Al, Safi, Maha Al, Ali, Raghib, Zaher, Walid, Harbi, Mariam Al, Shamout, Farah E.

论文摘要

现有的预后工具主要集中于预测2019年冠状病毒疾病患者死亡率的风险。但是,临床证据表明,covid-19可能导致影响患者预后的非年龄并发症。为了支持患者的风险分层,我们旨在开发一种预测的预后系统,该系统预测了Covid-19的并发症。在这项回顾性研究中,我们使用了从3,352 COVID-19的患者遇到的3352例患者遇到的数据,这些数据在2020年4月1日至4月30日在阿布扎比(AD)的18个设施中接受。这些医院根据地理位置近距离进行了分割,以评估我们提出的系统的学习通用性,广告中部地区和AD AD西部和东部地区A和B。使用在入院的前24小时收集的数据,基于机器学习的预后系统可以预测医院住院期间七种并发症中任何一种并发症的风险。并发症包括继发性细菌感染,AKI,ARDS和与患者严重程度增加有关的生物标志物,包括D-二聚体,白介素6,氨基转移酶和肌钙蛋白。在训练过程中,该系统适用于每个并发症特异性模型的排除标准,高参数调整和模型选择。该系统在所有并发症和两个区域都达到了良好的准确性。在测试集A(587例患者遇到)中,该系统可为AKI实现0.91 AUROC,而其他大多数并发症的AUROC> 0.80 AUROC。在测试集B(225例患者遇到)中,各自的系统可为AKI,肌钙蛋白升高和白介素-6的升高和> 0.80 AUROC实现0.90 AUROC,对于大多数其他并发症。我们系统选择的最佳性能模型主要是梯度增强模型和逻辑回归。我们的结果表明,使用机器学习的数据驱动方法可以高精度预测这种并发症的风险。

Existing prognostic tools mainly focus on predicting the risk of mortality among patients with coronavirus disease 2019. However, clinical evidence suggests that COVID-19 can result in non-mortal complications that affect patient prognosis. To support patient risk stratification, we aimed to develop a prognostic system that predicts complications common to COVID-19. In this retrospective study, we used data collected from 3,352 COVID-19 patient encounters admitted to 18 facilities between April 1 and April 30, 2020, in Abu Dhabi (AD), UAE. The hospitals were split based on geographical proximity to assess for our proposed system's learning generalizability, AD Middle region and AD Western & Eastern regions, A and B, respectively. Using data collected during the first 24 hours of admission, the machine learning-based prognostic system predicts the risk of developing any of seven complications during the hospital stay. The complications include secondary bacterial infection, AKI, ARDS, and elevated biomarkers linked to increased patient severity, including d-dimer, interleukin-6, aminotransferases, and troponin. During training, the system applies an exclusion criteria, hyperparameter tuning, and model selection for each complication-specific model. The system achieves good accuracy across all complications and both regions. In test set A (587 patient encounters), the system achieves 0.91 AUROC for AKI and >0.80 AUROC for most of the other complications. In test set B (225 patient encounters), the respective system achieves 0.90 AUROC for AKI, elevated troponin, and elevated interleukin-6, and >0.80 AUROC for most of the other complications. The best performing models, as selected by our system, were mainly gradient boosting models and logistic regression. Our results show that a data-driven approach using machine learning can predict the risk of such complications with high accuracy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源