论文标题
稀疏质量矩阵的明确几何结构,用于任意四面体网格
Explicit geometric construction of sparse inverse mass matrices for arbitrary tetrahedral grids
论文作者
论文摘要
有限元方法(FEM)的几何重新解释表明,raviart Thomas和Nedelec质量矩阵图来自附着在与BaryCentric Dual Grid上的DOF的几何元素上的自由度(DOF)(DOFS)。质量矩阵映射的代数对dof的代数dofs连接到重心双网格回到附着在相应的原始四面体网格上的DOF上,但由于它们密度很高,因此它们的实际用途有限。 在本文中,我们介绍了用于任意四面体网格和可能的各向异性材料的稀疏逆质量矩阵的新几何结构,揭露了Barycentric双重双网格禁止稀疏代表反向质量矩阵的稀疏表示。特别是,我们提供了一个统一的框架,用于构建边缘和面部质量矩阵及其稀疏倒置。这样的统一原理依赖于新颖的几何重建公式,根据建立的设计策略,将局部质量矩阵构建为一致和稳定项的总和。到目前为止,与提出的方法的主要区别在于,一致的项是通过几何和明确定义的,即无需计算局部矩阵的倒置。这提供了明智的加速和更容易的实现。我们使用这些新的稀疏质量矩阵来离散三维泊松问题,从而提供了通过分析溶液对基准问题的各种配方获得的结果的比较。
The geometric reinterpretation of the Finite Element Method (FEM) shows that Raviart Thomas and Nedelec mass matrices map from degrees of freedoms (DoFs) attached to geometric elements of a tetrahedral grid to DoFs attached to the barycentric dual grid. The algebraic inverses of the mass matrices map DoFs attached to the barycentric dual grid back to DoFs attached to the corresponding primal tetrahedral grid, but they are of limited practical use since they are dense. In this paper we present a new geometric construction of sparse inverse mass matrices for arbitrary tetrahedral grids and possibly anisotropic materials, debunking the conventional wisdom that the barycentric dual grid prohibits a sparse representation for inverse mass matrices. In particular, we provide a unified framework for the construction of both edge and face mass matrices and their sparse inverses. Such a unifying principle relies on novel geometric reconstruction formulas, from which, according to a well established design strategy, local mass matrices are constructed as the sum of a consistent and a stabilization term. A major difference with the approaches proposed so far is that the consistent term is defined geometrically and explicitly, that is, without the necessity of computing the inverses of local matrices. This provides a sensible speedup and an easier implementation. We use these new sparse inverse mass matrices to discretize a three dimensional Poisson problem, providing the comparison between the results obtained by various formulations on a benchmark problem with analytical solution.