论文标题
动力学反映了拓扑超导体的无间隙边缘模式
Dynamics Reflect Gapless Edge Modes for Topological Superconductor
论文作者
论文摘要
我们专注于不同参数区域中$ p $ - 波超导体模型的动力学功能,以卷轴几何形状中的无间隙边缘模式的外观。首先,我们以无间隙边缘模式显示了参数区域,而参数和Quasi-Momentum则显示了参数区域。参数图可以通过全球举止的Pauli矩阵的期望来反映。在另一种观点中,激发的动态特征在具有拓扑间隙边缘模式而非拓扑区域的参数区域的行为不同。随着参数的传递参数区域的边界,动态返回速率的尖消失了。已经发现,具有间隙边缘模式的参数区域中的动力学与没有边缘模式的动力学不同,并且主要与淬火前和后液体本征态之间的特征力差距有关。动态返回速率的尖针对晶格中的噪声行为强烈,直到定位行为占主导地位。这项工作受益于通过动态方式检测拓扑边缘模式。
We focus on the dynamical feature for a $p$-wave superconductor model in different parameter regions in terms of the appearance of gapless edge modes in reel geometry. Firstly, we show the parameter region with gapless edge modes versus a parameter and quasi-momentum. The parameter diagram can be reflected by the expectations of Pauli matrices in global manners. In another view, the dynamical feature of the excitation behave differently in the parameter regions with topological gapless edge modes and not. And the cusps of dynamical return rate vanish as the parameter pass the boundary in the parameter region slowly enough. It is found that the dynamics in the parameter region with gapless edge modes behaves differently to that without edge modes and related mostly to the eigenenergy gap between the pre-and post-quench eigenstates. The cusps of the dynamical return rate behave robustly against the noise in the lattice until localization behavior dominates. This work benefits detecting topological edge modes by dynamical manners.