论文标题

船舶检测:参数服务器变体

Ship Detection: Parameter Server Variant

论文作者

Smith, Benjamin

论文摘要

卫星光学图像中的深度学习船检测遭受云,地质和人造物体的假阳性事件,这些物体会干扰正确的船舶分类,通常将类准确度得分限制在88%\%。这项工作探讨了基于云的解决方案中的自定义策略,班级准确率,培训时间和成本之间的紧张关系。我们演示了自定义U-NET如何在验证数据集上实现92 \%类的准确性,而目标数据集则具有90 \%置信度的目标数据集。我们还将单个节点体系结构与参数服务器变体进行比较,其工人充当提升机制。与最佳的单节点方法相比,目标数据集上的参数服务器变体优于目标数据集上的类精度。在经验发现的支持下,讨论了对单节点和参数服务器变体体系结构的系统性能的比较研究。

Deep learning ship detection in satellite optical imagery suffers from false positive occurrences with clouds, landmasses, and man-made objects that interfere with correct classification of ships, typically limiting class accuracy scores to 88\%. This work explores the tensions between customization strategies, class accuracy rates, training times, and costs in cloud based solutions. We demonstrate how a custom U-Net can achieve 92\% class accuracy over a validation dataset and 68\% over a target dataset with 90\% confidence. We also compare a single node architecture with a parameter server variant whose workers act as a boosting mechanism. The parameter server variant outperforms class accuracy on the target dataset reaching 73\% class accuracy compared to the best single node approach. A comparative investigation on the systematic performance of the single node and parameter server variant architectures is discussed with support from empirical findings.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源