论文标题
间隔驱动的离散时间一般非线性鲁棒控制:稳定稳定的DOA稳定
Interval-driven discrete-time general nonlinear robust control: stabilization with closed-loop robust DOA enlargement
论文作者
论文摘要
本文提出了新的结果,使人们可以解决离散的一般非线性鲁棒控制问题。不确定的系统由以标称模型和相应的建模误差结合为特征的一般非线性函数集来描述。传统合成方法设计结构化鲁棒控制器的参数。本文的主要目的是在状态控制空间中找到一个非结构化的鲁棒控制器,该控制器扩大了闭环鲁棒吸引力域(RDOA)的估计。基于间隔分析算术,提出了一种数值方法来估计非结构化鲁棒控制器集,并给出了严格的合并分析。现有的RDOA结果受Lyapunov函数的级别的限制,而本文中的结果消除了此限制。此外,提出了一个可解决的优化问题,因此通过从Lyapunov函数集中选择lyapunov函数的lyapunov函数集合的估计值集的估计值。然后,该方法通过特定的案例模拟研究验证,结果显示出比以前的方法更广泛的RDOA。
This paper presents new results that allow one to address the discrete-time general nonlinear robust control problem. The uncertain system is described by a general nonlinear function set characterized by the nominal model and the corresponding modeling error bound. Traditional synthesis methods design parameters of a structured robust controller. The key aim of this paper is to find an unstructured robust controller set in the state-control space, which enlarges the estimate of the closed-loop robust domain of attraction (RDOA). Based on the interval analysis arithmetic, a numerical method to estimate the unstructured robust controller set is proposed and the rigorous convergence analysis is given. The existing RDOA results are constrained by the level-set of the Lyapunov function, whereas the results in this paper remove this limitation. Furthermore, a solvable optimization problem is formulated so the estimate of RDOA is enlarged by selecting a Lyapunov function from a Lyapunov function set of sum-of-squares polynomials. The method is then validated by a specific case simulation study and results show more extensive RDOA than the previous methods.