论文标题
Seminll:半监督学习的嘈杂标签学习框架
SemiNLL: A Framework of Noisy-Label Learning by Semi-Supervised Learning
论文作者
论文摘要
用嘈杂的标签进行深度学习是一项具有挑战性的任务。最新的突出方法以特定样本选择(SS)策略和特定的半监督学习(SSL)模型实现了最先进的性能。如果采用了更强大的SS策略和SSL模型,则可以在直觉上实现更好的性能。遵循这种直觉,人们可能会使用SS策略和SSL模型的不同组合轻松地得出各种有效的嘈杂的学习方法,但是,这本质上是重新发明的。为了防止此问题,我们提出了Seminll,这是一个多功能框架,以端到端的方式结合了SS策略和SSL模型。我们的框架可以吸收各种SS策略和SSL骨架,利用其力量来实现有希望的性能。我们还使用不同的组合来实例化框架,该组合设置了带有嘈杂标签的基准模拟和现实世界中的新最新状态。
Deep learning with noisy labels is a challenging task. Recent prominent methods that build on a specific sample selection (SS) strategy and a specific semi-supervised learning (SSL) model achieved state-of-the-art performance. Intuitively, better performance could be achieved if stronger SS strategies and SSL models are employed. Following this intuition, one might easily derive various effective noisy-label learning methods using different combinations of SS strategies and SSL models, which is, however, reinventing the wheel in essence. To prevent this problem, we propose SemiNLL, a versatile framework that combines SS strategies and SSL models in an end-to-end manner. Our framework can absorb various SS strategies and SSL backbones, utilizing their power to achieve promising performance. We also instantiate our framework with different combinations, which set the new state of the art on benchmark-simulated and real-world datasets with noisy labels.