论文标题

分支随机步行的水平集的较低偏差概率

Lower deviation probabilities for level sets of the branching random walk

论文作者

Zhang, Shuxiong

论文摘要

给定一个随机步行$ \ {z_n \} _ {n \ geq0} $上的$ \ mathbb {r} $,让$ z_n([y,\ infty))$是位于$ n $ n $ n $ n $ n $ n $ n $ n $ n $ n $ n $ [y,\ infty)中的粒子数量。从\ cite {biggins1977}中知道,在某些温和条件下,$ n^{ - 1} \ log z_n([[θx^* n,\ infty))$ convery a.s.到$ \ log m-i(θx^*)$,其中$ \ log m-i(θx^*)$是一个正常数。在这项工作中,我们研究了其较低的偏差,换句话说,$ \ mathbb {p} \ left的收敛速率(z_n(z_n([θx^* n,\ infty)))<e^{an} \ right),$ a \ in $ a \其中$ a \ in [0,0,\ log log log m-i(\ log m-i(fiol m-i(f)m-i mi(θx^**))$。我们的结果完成了\ cite {mehmet},\ cite {helower}和\ cite {gwlower}中的结果。

Given a branching random walk$\{Z_n\}_{n\geq0}$ on $\mathbb{R}$, let $Z_n([y,\infty))$ be the number of particles located in $[y,\infty)$ at generation $n$. It is known from \cite{Biggins1977} that under some mild conditions, $n^{-1}\log Z_n([θx^* n,\infty))$ converges a.s. to $\log m-I(θx^*)$, where $\log m-I(θx^*)$ is a positive constant. In this work, we investigate its lower deviation, in other words, the convergence rates of $$\mathbb{P}\left(Z_n([θx^* n,\infty))<e^{an}\right),$$ where $a\in[0,\log m-I(θx^*))$. Our results complete those in \cite{Mehmet}, \cite{Helower} and \cite{GWlower}.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源