论文标题
Hausdorff和Gromov-Hausdorff距离几何学的讲座
Lectures on Hausdorff and Gromov-Hausdorff Distance Geometry
论文作者
论文摘要
该课程是在2019年秋季北京大学开设的。 我们讨论以下主题: (1)一般拓扑,超空间,度量和伪时间学空间的简介,图理论。 (2)公制空间,最小跨越树,施泰纳最小树,Gromov最小填充的图。 (3)Hausdorff距离,越野拓扑,限制理论,完整性的遗传,总界限,超空间的紧凑性。 (4)Gromov-Hausdorff距离,三角形不等式,紧凑型空间等轴测类别的积极确定性,对界面的紧凑空间的反例。 (5)以\ ell_ \ Infty,对应关系,Gromov-Hausdorff距离的距离图像而言,Gromov-Hausdorff的距离距离。 (6)Epsilon-Isometries和Gromov-Hausdorff距离。 (7)不可还原的对应关系和Gromov-Hausdorff距离。 (8)Gromov-Hausdorff收敛,度量和拓扑特性的继承,而Gromov-Hausdorff收敛。 (9)Gromov-Hausdorff空间(GH空间),最佳对应关系,紧凑型公式空间的封闭最佳对应关系,GH空间是大地测量的。 (10)GH空间的封面号,包装号,总界限,完整性和可分离性。 (11)关于单纯的GH距离的MST光谱,GH空间中的Steiner问题。 (12)具有更多点的GH-DISTANCE,GH-DISTANCE与单纯距离具有最多相同数量的单纯距离。 (13)广义的BORSUK问题,在GH-distances方面的广义BORSUK问题解决方案,覆盖数量和色数的二元组,它们的二元性,以GH距离计算这些数字。
The course was given at Peking University, Fall 2019. We discuss the following subjects: (1) Introduction to general topology, hyperspaces, metric and pseudometric spaces, graph theory. (2) Graphs in metric spaces, minimum spanning tree, Steiner minimal tree, Gromov minimal filling. (3) Hausdorff distance, Vietoris topology, Limits theory, inheritance of completeness, total boundedness, compactness by hyperspaces. (4) Gromov-Hausdorff distance, triangle inequality, positive definiteness for isometry classes of compact spaces, counterexample for boundedly compact spaces. (5) Gromov-Hausdorff distance for separable spaces in terms of their isometric images in \ell_\infty, correspondences, Gromov-Hausdorff distance in terms of correspondences. (6) Epsilon-isometries and Gromov-Hausdorff distance. (7) Irreducible correspondences and Gromov-Hausdorff distance. (8) Gromov-Hausdorff convergence, inheritance of metric and topological properties while Gromov-Hausdorff convergence. (9) Gromov-Hausdorff space (GH-space), optimal correspondences, existence of closed optimal correspondences for compact metric spaces, GH-space is geodesic. (10) Cover number, packing number, total boundedness, completeness, and separability of GH-space. (11) mst-spectrum in terms of GH-distances to simplexes, Steiner problem in GH-space. (12) GH-distance to simplexes with more points, GH-distance to simplexes with at most the same number of points. (13) Generalized Borsuk problem, solution of Generalized Borsuk problem in terms of GH-distances, clique covering number and chromatic number of simple graphs, their dualities, calculating these numbers in terms of GH-distances.