论文标题

有限功能编码量子状态

Finite-Function-Encoding Quantum States

论文作者

Appel, Paul, Heilman, Alexander J., Wertz, Ezekiel W., Lyons, David W., Huber, Marcus, Pivoluska, Matej, Vitagliano, Giuseppe

论文摘要

我们介绍了编码任意$ d $值逻辑功能的有限功能编码(FFE)状态,即整数环上的多元函数模拟$ d $,并调查其一些结构属性。我们还指出了多项式和非多项式函数编码状态之间的某些差异:前者可以与图形对象相关联,即我们配音张张量 - 边缘超图(TEH),这些张力是对每个超齿的张量的张量的概括,这些张量是张量的,该张量是连接到每个超质量的不同单一元素系数的概括。为了完成框架,我们还引入了有限函数编码的Pauli(FP)操作员的概念,该概念与数学中所谓的广义对称组的元素相对应。首先,使用这种机械,我们研究了与FFE状态相关的稳定器组,并观察ARXIV中引入的Qudit HyperGraph状态:1612.06418V2允许稳定器的稳定器特别简单。之后,我们研究了本地一级人士(LU)下的FFE国家的分类,在显示了该问题的复杂性之后,我们重点介绍了两分国家的情况,尤其是在本地FP操作(LFP)下的分类。我们找到了两个Qutrits和两个木quarts的LU和LFP类,并研究了其他几个特殊类别,指出了最大纠缠的FFE状态与复杂的Butson型Hadamard矩阵之间的关系。我们的调查还展示了FFE状态的性质,尤其是其LU分类与整数上有限环的理论之间的关系。

We introduce finite-function-encoding (FFE) states which encode arbitrary $d$-valued logic functions, i.e., multivariate functions over the ring of integers modulo $d$, and investigate some of their structural properties. We also point out some differences between polynomial and non-polynomial function encoding states: The former can be associated to graphical objects, that we dub tensor-edge hypergraphs (TEH), which are a generalization of hypergraphs with a tensor attached to each hyperedge encoding the coefficients of the different monomials. To complete the framework, we also introduce a notion of finite-function-encoding Pauli (FP) operators, which correspond to elements of what is known as the generalized symmetric group in mathematics. First, using this machinery, we study the stabilizer group associated to FFE states and observe how qudit hypergraph states introduced in arXiv:1612.06418v2 admit stabilizers of a particularly simpler form. Afterwards, we investigate the classification of FFE states under local unitaries (LU), and, after showing the complexity of this problem, we focus on the case of bipartite states and especially on the classification under local FP operations (LFP). We find all LU and LFP classes for two qutrits and two ququarts and study several other special classes, pointing out the relation between maximally entangled FFE states and complex Butson-type Hadamard matrices. Our investigation showcases also the relation between the properties of FFE states, especially their LU classification, and the theory of finite rings over the integers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源