论文标题
尖峰神经网络中的可重构计算
Reconfigurable Computation in Spiking Neural Networks
论文作者
论文摘要
排序排序的计算在认知任务中起着基本作用,并为计算任意数字功能提供了基本的构建块。已证明尖峰神经网络能够通过其集体非线性动力学识别N模拟输入信号中最大的K。通过查找部分排名顺序,他们执行K-获奖者处理所有计算。但是,对于到目前为止的任何给定的研究,k的值是固定的,通常是k相等的。在这里,我们提出了一个刺激神经网络的概念,该概念通过一个全局系统参数选择k,能够(重新)可配置计算。尖峰网络通过抑制性脉冲偶联引起的脉冲抑制作用。耦合与每个单元的状态变量(神经元电压)成正比,构成了一种不常见但直接的泄漏的集成和火神经网络类型。计算的结果被编码为稳定的周期轨道,其k单元以某种频率升高,而其他频率则以较低的频率或根本而不是。轨道稳定性使所得类似于数字的计算稳健地对两个参数和信号的较小变化。此外,计算在每个神经元的一些尖峰排放量中很快完成。这些结果表明,如何在简单的硬件中实现并有效利用可重新配置的K-winner-take-take-take-take-take-take-All计算,该硬件仅依靠基本的动态单元和类似于简单电流泄漏到共同基础的基本动力学单元和尖峰相互作用。
The computation of rank ordering plays a fundamental role in cognitive tasks and offers a basic building block for computing arbitrary digital functions. Spiking neural networks have been demonstrated to be capable of identifying the largest k out of N analog input signals through their collective nonlinear dynamics. By finding partial rank orderings, they perform k-winners-take-all computations. Yet, for any given study so far, the value of k is fixed, often to k equal one. Here we present a concept for spiking neural networks that are capable of (re)configurable computation by choosing k via one global system parameter. The spiking network acts via pulse-suppression induced by inhibitory pulse-couplings. Couplings are proportional to each units' state variable (neuron voltage), constituting an uncommon but straightforward type of leaky integrate-and-fire neural network. The result of a computation is encoded as a stable periodic orbit with k units spiking at some frequency and others at lower frequency or not at all. Orbit stability makes the resulting analog-to-digital computation robust to sufficiently small variations of both, parameters and signals. Moreover, the computation is completed quickly within a few spike emissions per neuron. These results indicate how reconfigurable k-winners-take-all computations may be implemented and effectively exploited in simple hardware relying only on basic dynamical units and spike interactions resembling simple current leakages to a common ground.