论文标题

一种生成模型,用于合成癫痫发作预测的脑电图数据

A Generative Model to Synthesize EEG Data for Epileptic Seizure Prediction

论文作者

Rasheed, Khansa, Qadir, Junaid, O'Brien, Terence J., Kuhlmann, Levin, Razi, Adeel

论文摘要

癫痫发作之前的预测对于使患者的生活正常生命至关重要。研究人员使用手工制作的功能进行了机器学习方法进行癫痫发作预测。但是,ML方法太复杂了,无法选择最佳的ML模型或最佳功能。在自动特征提取的意义上,深度学习方法是有益的。准确癫痫发作预测的障碍之一是缺乏癫痫发作数据。本文通过提出深层卷积生成对抗网络来解决合成的EEG样品,从而解决了这个问题。我们使用两种方法来验证合成数据,即单级SVM和一个新的建议,我们将其称为卷积癫痫发作预测变量(CESP)。我们研究的另一个目的是通过培训模型在培训模型上使用转移学习,在真实预测和癫痫发作之间平均10分钟的时间来评估著名的深度学习模型(例如VGG16,VGG19,RESNET50和INCENTIONV3)的性能。我们的结果表明,CESP模型的灵敏度为78.11%和88.21%,而FPR为0.27/h和0.14/h,用于综合培训和对真实癫痫病和CHB-MIT数据集进行培训和测试。对合成数据训练的CESP的有效结果表明,合成数据非常好,可以很好地获得特征和标签之间的相关性。我们还表明,以患者为特定方式的转移学习和数据增强思想的利用可提供最高的精度,灵敏度为90.03%和0.03 fpr/h,这是使用InceptionV3实现的,并且通过从我们的CESP模型和IncentionV3的预测结果增加了4-5%的dcgan产生的样品,并将数据提高到总体上的预测,而不是传统的增强技术。最后,我们注意到,通过使用增强数据实现的CESP的预测结果比两个数据集的机会级别都要好。

Prediction of seizure before they occur is vital for bringing normalcy to the lives of patients. Researchers employed machine learning methods using hand-crafted features for seizure prediction. However, ML methods are too complicated to select the best ML model or best features. Deep Learning methods are beneficial in the sense of automatic feature extraction. One of the roadblocks for accurate seizure prediction is scarcity of epileptic seizure data. This paper addresses this problem by proposing a deep convolutional generative adversarial network to generate synthetic EEG samples. We use two methods to validate synthesized data namely, one-class SVM and a new proposal which we refer to as convolutional epileptic seizure predictor (CESP). Another objective of our study is to evaluate performance of well-known deep learning models (e.g., VGG16, VGG19, ResNet50, and Inceptionv3) by training models on augmented data using transfer learning with average time of 10 min between true prediction and seizure onset. Our results show that CESP model achieves sensitivity of 78.11% and 88.21%, and FPR of 0.27/h and 0.14/h for training on synthesized and testing on real Epilepsyecosystem and CHB-MIT datasets, respectively. Effective results of CESP trained on synthesized data shows that synthetic data acquired the correlation between features and labels very well. We also show that employment of idea of transfer learning and data augmentation in patient-specific manner provides highest accuracy with sensitivity of 90.03% and 0.03 FPR/h which was achieved using Inceptionv3, and that augmenting data with samples generated from DCGAN increased prediction results of our CESP model and Inceptionv3 by 4-5% as compared to state-of-the-art traditional augmentation techniques. Finally, we note that prediction results of CESP achieved by using augmented data are better than chance level for both datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源