论文标题
通过双机器学习评估(加权)动态治疗效果
Evaluating (weighted) dynamic treatment effects by double machine learning
论文作者
论文摘要
我们考虑根据双机器学习来评估动态治疗的因果关系,即在各个时期的多个治疗序列,以控制观察到的,随时间变化的协变量,以数据驱动的方式在选择性的可观察到的假设下。为此,我们利用所谓的Neyman-Ottrotonal得分功能,这意味着治疗效应估计对动态结果和治疗模型的中等(局部)误差的稳定性。即使在高维协变量下,这种稳健性允许通过双机器学习近似结局和治疗模型,并与数据分割结合在一起以防止过度拟合。除了对总人群的影响估计外,我们还考虑了加权估计,这些估计允许评估特定亚组的动态治疗效果,例如在第一个治疗期治疗的人中。我们证明估计器在特定的规律性条件下是渐近正常的,$ \ sqrt {n} $ - 一致,并在仿真研究中研究其有限样本属性。最后,我们将这些方法应用于乔布斯研究,以评估大量协变量下的不同培训计划序列。
We consider evaluating the causal effects of dynamic treatments, i.e. of multiple treatment sequences in various periods, based on double machine learning to control for observed, time-varying covariates in a data-driven way under a selection-on-observables assumption. To this end, we make use of so-called Neyman-orthogonal score functions, which imply the robustness of treatment effect estimation to moderate (local) misspecifications of the dynamic outcome and treatment models. This robustness property permits approximating outcome and treatment models by double machine learning even under high dimensional covariates and is combined with data splitting to prevent overfitting. In addition to effect estimation for the total population, we consider weighted estimation that permits assessing dynamic treatment effects in specific subgroups, e.g. among those treated in the first treatment period. We demonstrate that the estimators are asymptotically normal and $\sqrt{n}$-consistent under specific regularity conditions and investigate their finite sample properties in a simulation study. Finally, we apply the methods to the Job Corps study in order to assess different sequences of training programs under a large set of covariates.