论文标题

基于置换的功能磁共振成像集群分析的真实发现比例

Permutation-based true discovery proportions for functional Magnetic Resonance Imaging cluster analysis

论文作者

Andreella, Angela, Hemerik, Jesse, Weeda, Wouter, Finos, Livio, Goeman, Jelle

论文摘要

我们提出了一种基于置换的方法,用于同时测试大量假设。我们的方法为任何选定的假设子集中的真实发现数量提供了下限。这些界限同时具有很高的信心。该方法在功能磁共振成像集群分析中特别有用,在该方法中,它提供了有关体素簇中真正激活的体素百分比的置信陈述,从而避免了众所周知的空间特异性悖论。我们提供一个用户友好的工具,以估算每个集群的真实发现百分比,同时控制多次测试的家庭错误率,并考虑到以数据驱动方式选择群集。该方法适应了表征功能磁共振成像数据的空间相关结构,并获得了参数方法的功率。

We propose a permutation-based method for testing a large collection of hypotheses simultaneously. Our method provides lower bounds for the number of true discoveries in any selected subset of hypotheses. These bounds are simultaneously valid with high confidence. The methodology is particularly useful in functional Magnetic Resonance Imaging cluster analysis, where it provides a confidence statement on the percentage of truly activated voxels within clusters of voxels, avoiding the well-known spatial specificity paradox. We offer a user-friendly tool to estimate the percentage of true discoveries for each cluster while controlling the family-wise error rate for multiple testing and taking into account that the cluster was chosen in a data-driven way. The method adapts to the spatial correlation structure that characterizes functional Magnetic Resonance Imaging data, gaining power over parametric approaches.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源