论文标题

无模型数据驱动计算力学的有效数据结构

Efficient Data Structures for Model-free Data-Driven Computational Mechanics

论文作者

Eggersmann, Robert, Stainier, Laurent, Ortiz, Michael, Reese, Stefanie

论文摘要

Kirchdoerfer和Ortiz(2016)最初引入的数据驱动的计算范例使实心力学中的有限元计算可以直接从材料数据集执行,而无需显式材料模型。从计算工作的角度来看,最具挑战性的任务是在材料数据集中最接近的材料点上可接受的状态预测。在这项研究中,我们比较并开发了几种可能解决最近邻居问题的数据结构。我们表明,相对于精确的搜索算法,大约最近的邻居(ANN)算法可以通过几个数量级加速材料数据搜索。这些近似值是通过(并适应)数据驱动的迭代求解器的结构,并导致溶液准确性的显着损失。我们在3D弹性测试案例的帮助下评估了ANN算法在材料数据集大小方面的性能。我们表明,在几秒钟的执行时间内,具有多达十亿个材料数据点的单个处理器上的计算是可行的,相对于精确的K-d树的加速超过106。

The data-driven computing paradigm initially introduced by Kirchdoerfer and Ortiz (2016) enables finite element computations in solid mechanics to be performed directly from material data sets, without an explicit material model. From a computational effort point of view, the most challenging task is the projection of admissible states at material points onto their closest states in the material data set. In this study, we compare and develop several possible data structures for solving the nearest-neighbor problem. We show that approximate nearest-neighbor (ANN) algorithms can accelerate material data searches by several orders of magnitude relative to exact searching algorithms. The approximations are suggested by--and adapted to--the structure of the data-driven iterative solver and result in no significant loss of solution accuracy. We assess the performance of the ANN algorithm with respect to material data set size with the aid of a 3D elasticity test case. We show that computations on a single processor with up to one billion material data points are feasible within a few seconds execution time with a speedup of more than 106 with respect to exact k-d trees.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源