论文标题
使用条件生成的对抗网络的类失衡丢失数据的插图
Imputation of Missing Data with Class Imbalance using Conditional Generative Adversarial Networks
论文作者
论文摘要
缺少数据是现实世界数据集面临的常见问题。插补是一种广泛使用的技术,可以估计丢失的数据。最先进的插补方法,例如生成对抗插补网(增益),对观察到的数据的分布进行建模以近似丢失值。这种方法通常为整个数据集建模一个单个分布,该分布忽略了数据的特定特征。当班级失衡时,特定于班级的特征特别有用。我们提出了一种通过调整流行的条件生成对抗网络(CGAN)来基于其类别特异性特征来推出丢失数据的新方法。我们的条件生成对抗插补网络(CGAIN)使用特定于类的分布施加缺失的数据,这可以为缺失值产生最佳估计。我们在基准数据集上测试了我们的方法,并与最先进和流行的插补方法相比,取得了出色的性能。
Missing data is a common problem faced with real-world datasets. Imputation is a widely used technique to estimate the missing data. State-of-the-art imputation approaches, such as Generative Adversarial Imputation Nets (GAIN), model the distribution of observed data to approximate the missing values. Such an approach usually models a single distribution for the entire dataset, which overlooks the class-specific characteristics of the data. Class-specific characteristics are especially useful when there is a class imbalance. We propose a new method for imputing missing data based on its class-specific characteristics by adapting the popular Conditional Generative Adversarial Networks (CGAN). Our Conditional Generative Adversarial Imputation Network (CGAIN) imputes the missing data using class-specific distributions, which can produce the best estimates for the missing values. We tested our approach on benchmark datasets and achieved superior performance compared with the state-of-the-art and popular imputation approaches.