论文标题
从磁性数据中恢复了电导率和磁渗透性的独特恢复
Unique recovery of electrical conductivity and magnetic permeability from Magneto-Telluric data
论文作者
论文摘要
我们在$ \ mathbb {r}^3 $中介绍了磁性磁铁(MT)方法的全面数学研究。我们表明,假定为$ c^2 $的电导率和磁渗透性可以从在域边界上测量的MT数据中唯一回收。证明是基于复杂几何光学解决方案的构建。此外,在仅在边界的开放子集上测量MT数据的情况下,我们获得了独特的确定结果。在这里,我们假设边界的一部分无法访问测量是球体的子集。
We present a comprehensive mathematical study of the Magneto-Telluric (MT) method, on bounded domain in $\mathbb{R}^3$. We show that electrical conductivity and magnetic permeability, assumed to be $C^2$, can be uniquely recovered from MT data measured on the boundary of the domain. The proof is based on the construction of complex geometric optics solutions. Furthermore, we obtain a unique determination result in the case when the MT data are measured only on an open subset of the boundary. Here, we assume that the part of the boundary inaccessible for measurements is a subset of a sphere.