论文标题

纳米接触中非绝热隧穿的准经典理论,由相控制的超短脉冲诱导

Quasiclassical theory of non-adiabatic tunneling in nanocontacts induced by phase-controlled ultrashort light pulses

论文作者

Kim, Sangwon, Schmude, Tobias, Burkard, Guido, Moskalenko, Andrey S.

论文摘要

从理论上讲,我们通过自由空间或介电纳米胶囊研究了由超短超速频带脉冲驱动的金属纳米接触之间的隧道。为此,我们开发了一种时间依赖性的准经典理论,特别适合描述非绝热制度中的隧道过程,而随着电子在经典禁止的区域的移动,该过程可能会受到光子吸收的显着影响。首先,研究了理想的半循环脉冲驾驶的情况。对于触点之间的不同距离,我们分析了具有隧道电子的准经典波数据包形式的主要解决方案和电子密度的evanevencent波浪。对于这些解决方案中的每一种,由该方法固有的指数准确性确定了所得的隧穿概率。我们确定了两个隧道状态之间的交叉,这两个溶液对应于两种溶液的依赖性对野外强度和互操的距离,这在隧道概率的相应行为中可以观察到。其次,考虑到几秒脉冲的逼真的时间曲线,我们证明了通过改变脉冲的携带者 - 内维波阶段的电子传输的首选方向与最近的实验发现和数值模拟一致。我们发现隧道概率的分析表达式,确定所得的电荷转移,以依赖脉冲参数。此外,我们根据依赖脉冲相的激光场的峰来确定外向电子轨迹的时间移动,并说明隧道过程的非绝热特征何时尤为重要。

We theoretically investigate tunneling through free-space or dielectric nanogaps between metallic nanocontacts driven by ultrashort ultrabroadband light pulses. For this purpose we develop a time-dependent quasiclassical theory being especially suitable to describe the tunneling process in the non-adiabatic regime, when this process can be significantly influenced by the photon absorption as the electron moves in the classically forbidden region. Firstly, the case of driving by an ideal half-cycle pulse is studied. For different distances between the contacts, we analyze the main solutions having the form of a quasiclassical wave packet of the tunneling electron and an evanescent wave of the electron density. For each of these solutions the resulting tunneling probability is determined with the exponential accuracy inherent to the method. We identify a crossover between two tunneling regimes corresponding to both solutions in dependence on the field strength and intercontact distance that can be observed in the corresponding behaviour of the tunneling probability. Secondly, considering realistic temporal profiles of few-femtosecond pulses, we demonstrate that the preferred direction of the electron transport through the nanogap can be controlled by changing the carrier-envelope phase of the pulse, in agreement with recent experimental findings and numerical simulations. We find analytical expressions for the tunneling probability, determining the resulting charge transfer in dependence on the pulse parameters. Further, we determine temporal shifts of the outgoing electron trajectories with respect to the peaks of the laser field in dependence on the pulse phase and illustrate when the non-adiabatical character of the tunneling process is particularly important.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源