论文标题

检测纠缠可以通过不等的互无偏基可以更有效

Detecting Entanglement can be More Effective with Inequivalent Mutually Unbiased Bases

论文作者

Hiesmayr, B. C., McNulty, D., Baek, S., Roy, S. Singha, Bae, J., Chruściński, D.

论文摘要

相互无偏基(MUB)在验证量子状态的验证中提供了标准工具,尤其是在利用完整的量子态层造影术的完整集时。在这项工作中,我们通过不相等的MUB组研究了纠缠的检测,特别关注不可延迟的MUB。这些是无法构建其他公正基础的基础,因此,不适合量子状态验证。在这里,我们表明,不可扩展的MUB以及在较高维度中的其他不相等集可以在纠缠验证方面更有效。此外,我们提供了一种有效而系统的方法来搜索不相等的MUB,并表明随着尺寸的增加,这种集合会定期发生在海森贝格 - 韦尔Mubs中。我们的发现对于实验者特别有用,因为在实验设置中添加最佳MUB可以逐步检测出更大类别的纠缠状态。

Mutually unbiased bases (MUBs) provide a standard tool in the verification of quantum states, especially when harnessing a complete set for optimal quantum state tomography. In this work, we investigate the detection of entanglement via inequivalent sets of MUBs, with a particular focus on unextendible MUBs. These are bases for which an additional unbiased basis cannot be constructed and, consequently, are unsuitable for quantum state verification. Here, we show that unextendible MUBs, as well as other inequivalent sets in higher dimensions, can be more effective in the verification of entanglement. Furthermore, we provide an efficient and systematic method to search for inequivalent MUBs and show that such sets occur regularly within the Heisenberg-Weyl MUBs, as the dimension increases. Our findings are particularly useful for experimentalists since adding optimal MUBs to an experimental setup enables a step-by-step approach to detect a larger class of entangled states.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源