论文标题

涂料映射课程组的自动形态

Automorphisms of profinite mapping class groups

论文作者

Boggi, Marco

论文摘要

对于$ s = s = s_ {g,n} $ a封闭式可区分的属$ g $的可区分表面,从中取出了$ n $点,因此$χ(s)= 2-2G-n <0 $,让$ \ m artrm {p Mathrm {p}γ(s)$ be $ s $ s $ s $ s $ s $ s&s $ s $ s and $ \ mathrm {p} p} $ {p} p} p} $ \ mathrm {p} \checkγ(s)$分别是其涂鸦和一致性完成。后者可以用自然表示的图像$ \ mathrm {p} \wideHatγ(s)\ to \ operatorName {out}({\widehatπ} _1(s))$,其中$ {\wideHatπ} _1(s)$是profinite copterals of profinite of pripinite of profinite of pripinite of saternite of sate $ sed $ sc $ s的$ s $。令$ \ operatorName {out}^{\ mathbb {i} _0}(\ mathrm {p} \wideHatγ(s))$和$ \ operatorName {out}^{out}^{\ mathbb {\ mathbb {i} _0} _0} _0}(\ mathrm)由非分离的dehn Twist生成的Procyclic子组的共轭类,让$ \ wideHat {\ permatatorName {gt}} $为涂鸦Grothendieck-TeichMüller组。然后,我们证明,对于$χ(s)<g-2 $,有一个自然的忠实表示:\ [\ [\ wideHat {\ propatatorName {gt}} \ hookrightArrow \ operatorArow \ operatorAtOrname {out}^{out}^{\ mathbb {\ mathbb {i} $σ_n$是$ s $的$ n $穿刺的对称组,一种自然的同构:\ [\ [\ perperatorname {out}^{\ mathbb {\ mathbb {i} _0}(\ mathrm {p}

For $S=S_{g,n}$ a closed orientable differentiable surface of genus $g$ from which $n$ points have been removed, such that $χ(S)=2-2g-n<0$, let $\mathrm{P}Γ(S)$ be the pure mapping class group of $S$ and $\mathrm{P}\widehatΓ(S)$ and $\mathrm{P}\checkΓ(S)$ be, respectively, its profinite and its congruence completions. The latter can be identified with the image of the natural representation $\mathrm{P}\widehatΓ(S)\to\operatorname{Out}({\widehatπ}_1(S))$, where ${\widehatπ}_1(S)$ is the profinite completion of the fundamental group of the surface $S$. Let $\operatorname{Out}^{\mathbb{I}_0}(\mathrm{P}\widehatΓ(S))$ and $\operatorname{Out}^{\mathbb{I}_0}(\mathrm{P}\checkΓ(S))$ be the groups of outer automorphisms which preserve the conjugacy class of a procyclic subgroup generated by a nonseparating Dehn twist and let $\widehat{\operatorname{GT}}$ be the profinite Grothendieck-Teichmüller group. We then prove that, for $χ(S)<g-2$, there is a natural faithful representation: \[\widehat{\operatorname{GT}}\hookrightarrow\operatorname{Out}^{\mathbb{I}_0}(\mathrm{P}\widehatΓ(S))\] and, letting $Σ_n$ be the symmetric group on the $n$ punctures of $S$, a natural isomorphism: \[\operatorname{Out}^{\mathbb{I}_0}(\mathrm{P}\checkΓ(S))\congΣ_n\times\widehat{\operatorname{GT}}.\]

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源