论文标题

重新思考和设计高性能的自动车牌识别方法

Rethinking and Designing a High-performing Automatic License Plate Recognition Approach

论文作者

Wang, Yi, Bian, Zhen-Peng, Zhou, Yunhao, Chau, Lap-Pui

论文摘要

在本文中,我们提出了一种实时,准确的自动车牌识别(ALPR)方法。我们的研究说明了ALPR的出色设计,具有四个见解:(1)基于重新采样的级联框架对速度和准确性都是有益的; (2)高效的车牌识别应大量额外的角色分割和经常性神经网络(RNN),但采用普通的卷积神经网络(CNN); (3)在CNN的情况下,利用有关车牌的顶点信息可以提高识别性能; (4)体重共享角色分类器解决了小型数据集中缺乏训练图像。基于这些见解,我们提出了一种新型的ALPR方法,称为VSNET。具体而言,VSNET包括两个CNN,即用于车牌检测的Vertexnet和用于车牌识别的SCR-NET,以基于重新采样的级联方式集成。在Vertexnet中,我们提出了一个有效的集成块,以提取车牌的空间特征。借助顶点监督信息,我们在Vertexnet中提出了一个顶点估计分支,以便可以将车牌纠正为SCR-NET的输入图像。在SCR-NET中,我们引入了一种水平编码技术,用于从左到右特征提取,并提出了一个为角色识别的重量共享分类器。实验结果表明,所提出的VSNET的表现优于最先进的方法,其错误率相对相对提高了50%以上,在CCPD和AOLP数据集上达到了149 FPS推断速度的识别精度> 99%。此外,我们的方法说明了在看不见的PKUDATA和CLPD数据集上评估时具有出色的概括能力。

In this paper, we propose a real-time and accurate automatic license plate recognition (ALPR) approach. Our study illustrates the outstanding design of ALPR with four insights: (1) the resampling-based cascaded framework is beneficial to both speed and accuracy; (2) the highly efficient license plate recognition should abundant additional character segmentation and recurrent neural network (RNN), but adopt a plain convolutional neural network (CNN); (3) in the case of CNN, taking advantage of vertex information on license plates improves the recognition performance; and (4) the weight-sharing character classifier addresses the lack of training images in small-scale datasets. Based on these insights, we propose a novel ALPR approach, termed VSNet. Specifically, VSNet includes two CNNs, i.e., VertexNet for license plate detection and SCR-Net for license plate recognition, integrated in a resampling-based cascaded manner. In VertexNet, we propose an efficient integration block to extract the spatial features of license plates. With vertex supervisory information, we propose a vertex-estimation branch in VertexNet such that license plates can be rectified as the input images of SCR-Net. In SCR-Net, we introduce a horizontal encoding technique for left-to-right feature extraction and propose a weight-sharing classifier for character recognition. Experimental results show that the proposed VSNet outperforms state-of-the-art methods by more than 50% relative improvement on error rate, achieving > 99% recognition accuracy on CCPD and AOLP datasets with 149 FPS inference speed. Moreover, our method illustrates an outstanding generalization capability when evaluated on the unseen PKUData and CLPD datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源