论文标题
重新思考和设计高性能的自动车牌识别方法
Rethinking and Designing a High-performing Automatic License Plate Recognition Approach
论文作者
论文摘要
在本文中,我们提出了一种实时,准确的自动车牌识别(ALPR)方法。我们的研究说明了ALPR的出色设计,具有四个见解:(1)基于重新采样的级联框架对速度和准确性都是有益的; (2)高效的车牌识别应大量额外的角色分割和经常性神经网络(RNN),但采用普通的卷积神经网络(CNN); (3)在CNN的情况下,利用有关车牌的顶点信息可以提高识别性能; (4)体重共享角色分类器解决了小型数据集中缺乏训练图像。基于这些见解,我们提出了一种新型的ALPR方法,称为VSNET。具体而言,VSNET包括两个CNN,即用于车牌检测的Vertexnet和用于车牌识别的SCR-NET,以基于重新采样的级联方式集成。在Vertexnet中,我们提出了一个有效的集成块,以提取车牌的空间特征。借助顶点监督信息,我们在Vertexnet中提出了一个顶点估计分支,以便可以将车牌纠正为SCR-NET的输入图像。在SCR-NET中,我们引入了一种水平编码技术,用于从左到右特征提取,并提出了一个为角色识别的重量共享分类器。实验结果表明,所提出的VSNET的表现优于最先进的方法,其错误率相对相对提高了50%以上,在CCPD和AOLP数据集上达到了149 FPS推断速度的识别精度> 99%。此外,我们的方法说明了在看不见的PKUDATA和CLPD数据集上评估时具有出色的概括能力。
In this paper, we propose a real-time and accurate automatic license plate recognition (ALPR) approach. Our study illustrates the outstanding design of ALPR with four insights: (1) the resampling-based cascaded framework is beneficial to both speed and accuracy; (2) the highly efficient license plate recognition should abundant additional character segmentation and recurrent neural network (RNN), but adopt a plain convolutional neural network (CNN); (3) in the case of CNN, taking advantage of vertex information on license plates improves the recognition performance; and (4) the weight-sharing character classifier addresses the lack of training images in small-scale datasets. Based on these insights, we propose a novel ALPR approach, termed VSNet. Specifically, VSNet includes two CNNs, i.e., VertexNet for license plate detection and SCR-Net for license plate recognition, integrated in a resampling-based cascaded manner. In VertexNet, we propose an efficient integration block to extract the spatial features of license plates. With vertex supervisory information, we propose a vertex-estimation branch in VertexNet such that license plates can be rectified as the input images of SCR-Net. In SCR-Net, we introduce a horizontal encoding technique for left-to-right feature extraction and propose a weight-sharing classifier for character recognition. Experimental results show that the proposed VSNet outperforms state-of-the-art methods by more than 50% relative improvement on error rate, achieving > 99% recognition accuracy on CCPD and AOLP datasets with 149 FPS inference speed. Moreover, our method illustrates an outstanding generalization capability when evaluated on the unseen PKUData and CLPD datasets.