论文标题
分数$ g $ -laplacian的变异特征值
Variational Eigenvalues of the fractional $g$-Laplacian
论文作者
论文摘要
在目前的工作中,我们研究了由具有不同边界条件的分数$ g- $ laplacian操作员统治的非本地特征值的序列(dirichlet,noumann and Robin)所裁定的。由于操作员的非均匀性质,必须克服几个缺点,从而导致一些结果与功率功能的情况形成鲜明对比。
In the present work we study existence of sequences of variational eigenvalues to non-local non-standard growth problems ruled by the fractional $g-$Laplacian operator with different boundary conditions (Dirichlet, Neumann and Robin). Due to the non-homogeneous nature of the operator several drawbacks must be overcome, leading to some results that contrast with the case of power functions.