论文标题

通过转移学习对航空发动机性能的贝叶斯评估

Bayesian Assessments of Aeroengine Performance with Transfer Learning

论文作者

Seshadri, Pranay, Duncan, Andrew, Thorne, George, Parks, Geoffrey, Diaz, Raul Vazquez, Girolami, Mark

论文摘要

航空发动机性能取决于沿发动机内部轴向站的温度和压力曲线。鉴于沿轴向站和之间的传感器测量有限,我们需要一种统计原则的方法来推断这些曲线。在本文中,我们详细介绍了一种贝叶斯方法,用于插值航空发动机内轴向站的空间温度或压力曲线。任何给定的轴向站点的轮廓表示为环上的空间高斯随机场,并用傅立叶基础和径向变化模拟了圆周变化,并用平方指数式核建模。该高斯随机场扩展到来自多个轴向测量平面的摄入数据,目的是在整个平面上传输信息。为了促进这种转移学习,提出了一种新型的平面协方差内核,其超参数表征了任何两个测量平面之间的相关性。在包括温度场的精确频率尚不清楚的情况下,我们在频率上利用刺激性的先验来鼓励稀疏表示。这很容易扩展到具有多个发动机平面的情况,同时可以容纳平面之间的频率变化。主要的兴趣量,空间面积平均值很容易以封闭形式获得。我们认为这是贝叶斯区域的平均值,并演示了该度量标准如何比平均部门平均地区提供更精确的平均值 - 一种广泛使用的区域平均方法。此外,贝叶斯区域平均值自然将后部不确定性分别分别为表征采样不足和传感器测量误差的术语。这也比先前基于标准偏差的不确定性分解提供了重大改进。

Aeroengine performance is determined by temperature and pressure profiles along various axial stations within an engine. Given limited sensor measurements both along and between axial stations, we require a statistically principled approach to inferring these profiles. In this paper we detail a Bayesian methodology for interpolating the spatial temperature or pressure profile at axial stations within an aeroengine. The profile at any given axial station is represented as a spatial Gaussian random field on an annulus, with circumferential variations modelled using a Fourier basis and radial variations modelled with a squared exponential kernel. This Gaussian random field is extended to ingest data from multiple axial measurement planes, with the aim of transferring information across the planes. To facilitate this type of transfer learning, a novel planar covariance kernel is proposed, with hyperparameters that characterise the correlation between any two measurement planes. In the scenario where precise frequencies comprising the temperature field are unknown, we utilise a sparsity-promoting prior on the frequencies to encourage sparse representations. This easily extends to cases with multiple engine planes whilst accommodating frequency variations between the planes. The main quantity of interest, the spatial area average is readily obtained in closed form. We term this the Bayesian area average and demonstrate how this metric offers far more precise averages than a sector area average -- a widely used area averaging approach. Furthermore, the Bayesian area average naturally decomposes the posterior uncertainty into terms characterising insufficient sampling and sensor measurement error respectively. This too provides a significant improvement over prior standard deviation based uncertainty breakdowns.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源