论文标题

在线多对象跟踪中基于CRF的基于CRF的框架

A CRF-based Framework for Tracklet Inactivation in Online Multi-Object Tracking

论文作者

Gao, Tianze, Pan, Huihui, Wang, Zidong, Gao, Huijun

论文摘要

在线多对象跟踪(MOT)是计算机视觉领域的一个活跃研究主题。尽管许多先前提出的算法都表现出了不错的结果,但轨道失活的问题尚未得到充分研究。采用了简单的策略,例如在分类分数上使用固定阈值,从而产生不良跟踪错误并限制整体性能。在本文中,提出了一个有条件的随机字段(CRF)框架,以解决在线MOT问题中的轨道灭活问题。开发了一种利用跟踪假设之间框内关系的离散CRF,以提高轨道失活的鲁棒性。为CRF中的一单词和二进制术语设计了单独的特征功能集,这些功能考虑了实际情况下的各种跟踪挑战。为了处理MOT上下文中不同CRF节点的问题,采用了两种称为假设过滤和虚拟节点的策略。在提出的框架中,通过使用循环信念传播算法进行推理阶段,并且CRF参数是通过使用最大似然估计方法来确定的,然后进行轻微的手动调整。实验结果表明,跟踪器与基于CRF的框架相结合,优于MOT16和MOT17基准的基线。通过广泛的实验进一步验证了所提出框架的可扩展性。

Online multi-object tracking (MOT) is an active research topic in the domain of computer vision. Although many previously proposed algorithms have exhibited decent results, the issue of tracklet inactivation has not been sufficiently studied. Simple strategies such as using a fixed threshold on classification scores are adopted, yielding undesirable tracking mistakes and limiting the overall performance. In this paper, a conditional random field (CRF) based framework is put forward to tackle the tracklet inactivation issue in online MOT problems. A discrete CRF which exploits the intra-frame relationship between tracking hypotheses is developed to improve the robustness of tracklet inactivation. Separate sets of feature functions are designed for the unary and binary terms in the CRF, which take into account various tracking challenges in practical scenarios. To handle the problem of varying CRF nodes in the MOT context, two strategies named as hypothesis filtering and dummy nodes are employed. In the proposed framework, the inference stage is conducted by using the loopy belief propagation algorithm, and the CRF parameters are determined by utilizing the maximum likelihood estimation method followed by slight manual adjustment. Experimental results show that the tracker combined with the CRF-based framework outperforms the baseline on the MOT16 and MOT17 benchmarks. The extensibility of the proposed framework is further validated by an extensive experiment.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源