论文标题
启发式域的适应
Heuristic Domain Adaptation
论文作者
论文摘要
在视觉域的适应性(DA)中,将特定于域特异性的特征与域不变表示分开是一个问题。现有方法应用了不同种类的先验,或直接最大程度地减少域差异以解决此问题,这些问题缺乏处理现实世界中的灵活性。另一个研究管道将特定于域的信息表示为逐渐转移过程,在准确删除域特异性特性时,该信息往往是次优的。在本文中,我们从启发式搜索的角度解决了域不变和特定领域信息的建模。我们确定现有表示形式中导致较大领域差异的特征作为启发式表示。在启发式表示的指导下,我们制定了一个有原始的启发式领域适应性框架(HDA),并具有良好的理论保证。为了执行HDA,在学习过程中,余弦相似性得分和特定于域特异性表示之间的独立性分数和独立性测量值在最初和最终状态下被施加在约束中。与启发式搜索的最终条件类似,我们进一步得出了强制执行启发式网络输出的最终范围的约束。因此,我们提出了启发式域适应网络(HDAN),该网络明确地学习了具有上述约束的域不变和特定于域的表示。广泛的实验表明,HDAN超过了无监督的DA,多源DA和半监督的DA。该代码可在https://github.com/cuishuhao/hda上找到。
In visual domain adaptation (DA), separating the domain-specific characteristics from the domain-invariant representations is an ill-posed problem. Existing methods apply different kinds of priors or directly minimize the domain discrepancy to address this problem, which lack flexibility in handling real-world situations. Another research pipeline expresses the domain-specific information as a gradual transferring process, which tends to be suboptimal in accurately removing the domain-specific properties. In this paper, we address the modeling of domain-invariant and domain-specific information from the heuristic search perspective. We identify the characteristics in the existing representations that lead to larger domain discrepancy as the heuristic representations. With the guidance of heuristic representations, we formulate a principled framework of Heuristic Domain Adaptation (HDA) with well-founded theoretical guarantees. To perform HDA, the cosine similarity scores and independence measurements between domain-invariant and domain-specific representations are cast into the constraints at the initial and final states during the learning procedure. Similar to the final condition of heuristic search, we further derive a constraint enforcing the final range of heuristic network output to be small. Accordingly, we propose Heuristic Domain Adaptation Network (HDAN), which explicitly learns the domain-invariant and domain-specific representations with the above mentioned constraints. Extensive experiments show that HDAN has exceeded state-of-the-art on unsupervised DA, multi-source DA and semi-supervised DA. The code is available at https://github.com/cuishuhao/HDA.