论文标题

超快速模型与棱镜的仿真;分析Meraxes星系形成模型

Ultra-fast model emulation with PRISM; analyzing the Meraxes galaxy formation model

论文作者

van der Velden, Ellert, Duffy, Alan R., Croton, Darren, Mutch, Simon J.

论文摘要

我们证明了基于模拟器的方法在限制限制数据的域中分析星系形成模型的潜力。我们已将开源Python封装PRISM应用于Galaxy组模型Meraxes。 Meraxes是一个半分析模型,有目的地构建用于研究电离时期星系的生长(EOR)。但是,由于EOR中的观察数据的稀缺性,限制这种模型是复杂的。因此,Prism能够使用最小数据快速构建复杂科学模型的准确近似值的能力是很好地执行此分析。 本文概述了我们使用星系恒星质量密度的测量值分析Meraxs;光度功能;和色彩关系。在处理高度相关的模型参数和一组稀缺的观察数据时,我们证明了使用Prism而不是完整的贝叶斯分析的力量。我们的结果表明,各种观察数据集对Meraxs的限制有所不同,并且不一定彼此一致,这表明在约束此类模型时使用多种观察数据类型的重要性。此外,我们表明棱镜可以检测到模型参数何时过于相关或不能有效地约束。我们得出的结论是,即使不同观察数据类型的混合物,即使它们稀缺或不准确,它们也是理解星系形成的优先事项,并且诸如Prism之类的仿真框架可以指导选择此类数据的选择。

We demonstrate the potential of an emulator-based approach to analyzing galaxy formation models in the domain where constraining data is limited. We have applied the open-source Python package PRISM to the galaxy formation model Meraxes. Meraxes is a semi-analytic model, purposefully built to study the growth of galaxies during the Epoch of Reionization (EoR). Constraining such models is however complicated by the scarcity of observational data in the EoR. PRISM's ability to rapidly construct accurate approximations of complex scientific models using minimal data is therefore key to performing this analysis well. This paper provides an overview of our analysis of Meraxes using measurements of galaxy stellar mass densities; luminosity functions; and color-magnitude relations. We demonstrate the power of using PRISM instead of a full Bayesian analysis when dealing with highly correlated model parameters and a scarce set of observational data. Our results show that the various observational data sets constrain Meraxes differently and do not necessarily agree with each other, signifying the importance of using multiple observational data types when constraining such models. Furthermore, we show that PRISM can detect when model parameters are too correlated or cannot be constrained effectively. We conclude that a mixture of different observational data types, even when they are scarce or inaccurate, is a priority for understanding galaxy formation and that emulation frameworks like PRISM can guide the selection of such data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源