论文标题

在埃德斯的旧定理上关于模棱两可的基因座

On an old theorem of Erdös about ambiguous locus

论文作者

Hajłasz, Piotr

论文摘要

埃尔多斯(Erdös)在1946年证明,如果一套$ e \ subset \ mathbb {r}^n $是封闭且非空的,则在$ \ m m mathbb {r}^n $中的点,称为模棱两可的基因座或内侧轴,与$ e $最接近的属性属于$ e $的属性,n n n n n n n n n n n n n.我们通过在凸度和$ c^2 $规律性方面获得新的规律性结果来改善结果。

Erdös proved in 1946 that if a set $E\subset\mathbb{R}^n$ is closed and non-empty, then the set, called ambiguous locus or medial axis, of points in $\mathbb{R}^n$ with the property that the nearest point in $E$ is not unique, can be covered by countably many surfaces, each of finite $(n-1)$-dimensional measure. We improve the result by obtaining a new regularity result for these surfaces in terms of convexity and $C^2$ regularity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源