论文标题
使用参数化的邻里记忆适应改进语义角色标记
Improved Semantic Role Labeling using Parameterized Neighborhood Memory Adaptation
论文作者
论文摘要
深层神经模型为语义角色标记带来了一些最佳结果。受基于实例的学习的启发,该学习利用最近的邻居来处理低频上下文特定的训练样本,我们研究了在深神经模型中的记忆适应技术的使用。我们提出了一种参数化的邻域内存自适应方法(PNMA)方法,该方法在激活的内存中使用了令牌最近邻居的参数化表示,并根据训练数据中最相似的样本进行预测。我们从经验上表明,PNMA始终提高基本模型的SRL性能,而与单词嵌入类型无关。再加上源自BERT的上下文化词嵌入,PNMA在跨度和依赖性语义解析数据集(尤其是在室外文本上,在Conll2005和Conll2005上的F1分数)和84.97分别提高了现有模型的改进。
Deep neural models achieve some of the best results for semantic role labeling. Inspired by instance-based learning that utilizes nearest neighbors to handle low-frequency context-specific training samples, we investigate the use of memory adaptation techniques in deep neural models. We propose a parameterized neighborhood memory adaptive (PNMA) method that uses a parameterized representation of the nearest neighbors of tokens in a memory of activations and makes predictions based on the most similar samples in the training data. We empirically show that PNMA consistently improves the SRL performance of the base model irrespective of types of word embeddings. Coupled with contextualized word embeddings derived from BERT, PNMA improves over existing models for both span and dependency semantic parsing datasets, especially on out-of-domain text, reaching F1 scores of 80.2, and 84.97 on CoNLL2005, and CoNLL2009 datasets, respectively.