论文标题

宽带隙二维半导体双层硅氧化物中的分散和半灯条带

Dispersing and semi-flat bands in the wide band gap two-dimensional semiconductor bilayer silicon oxide

论文作者

Kremer, G., Alvarez-Quiceno, J. C., Pierron, T., González, C., Sicot, M., Kierren, B., Moreau, L., Rault, J. E., Fèvre, P. Le, Bertran, F., Dappe, Y. J., Coraux, J., Pochet, P., Fagot-Revurat, Y.

论文摘要

外延双层硅氧化物是一种可转移的二维材料,该材料被预测为宽带间隙半导体,具有潜在的深紫外光电子材料,或作为范德华异质结构的构建块。任何此类应用的先决条件是电子带结构的知识,我们使用角度分辨光发射光谱范围提出,并在密度功能理论计算的帮助下合理化。我们发现了材料顶部和底部平面内与电子定位的分散频带,两个线性交叉使人联想到双层AA堆叠石墨烯中预测的频带,以及由两个平面之间的化学桥形成的半固定带。这种带结构可抵抗暴露于空气,可以通过暴露于氧气来控制。我们提供了5 eV的带隙大小的实验性较低幅度,并使用密度功能理论计算预测了7.36 eV的完整隙。

Epitaxial bilayer silicon oxide is a transferable two-dimensional material predicted to be a wide band gap semiconductor, with potential applications for deep UV optoelectronics, or as a building block of van der Waals heterostructures. The prerequisite to any sort of such applications is the knowledge of the electronic band structure, which we unveil using angle-resolved photoemission spectroscopy and rationalise with the help of density functional theory calculations. We discover dispersing bands related to electronic delocalisation within the top and bottom planes of the material, with two linear crossings reminiscent of those predicted in bilayer AA-stacked graphene, and semi-flat bands stemming from the chemical bridges between the two planes. This band structure is robust against exposure to air, and can be controled by exposure to oxygen. We provide an experimental lower-estimate of the band gap size of 5 eV and predict a full gap of 7.36 eV using density functional theory calculations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源