论文标题

由X^6+ax+b定义的六字段的判别和积分基础

Discriminant and Integral basis of sextic fields defined by x^6+ax+b

论文作者

Kaur, Sumandeep, Khanduja, Sudesh Kaur

论文摘要

令$ k = \ mathbb q(θ)$是一个代数数字字段,$θ$带有不可减至的trinomial $ f(x)= x^6+ax+b $属于$ \ mathbb {z z} [x] $。在本文中,对于每个质数$ p $,我们计算了$ p $的最高功率,在$ k $的判别中,划分为$ a,〜b $ a,〜b $和$ f(x)$的判别。还为每个Prime $ P $提供了$ K $的明确$ p $ - 构成基础,并描述了一种方法是从这些$ p $ integral bases获得$ k $的积分基础,并用示例说明。

Let $K=\mathbb Q(θ)$ be an algebraic number field with $θ$ a root of an irreducible trinomial $f(x)=x^6+ax+b$ belonging to $\mathbb{Z}[x]$. In this paper, for each prime number $p$ we compute the highest power of $p$ dividing the discriminant of $K$ in terms of the prime powers dividing $a,~b$ and discriminant of $f(x)$. An explicit $p$-integral basis of $K$ is also given for each prime $p$ and a method is described to obtain an integral basis of $K$ from these $p$-integral bases which is illustrated with examples.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源