论文标题

擦除弹性的均方根时间图算法

Erasure-Resilient Sublinear-Time Graph Algorithms

论文作者

Levi, Amit, Pallavoor, Ramesh Krishnan S., Raskhodnikova, Sofya, Varma, Nithin

论文摘要

我们研究了以邻接列表为输入的部分删除图的均方根时间算法。我们的算法使学位和邻居查询输入图,并在邻接条目中使用指定的对抗擦除。我们专注于两个计算任务:测试是否连接了图或$ \ varepsilon $ -far,并估算平均度。对于测试连接性,我们发现了阈值现象:当擦除的分数小于$ \ varepsilon $时,可以有效地测试此属性(与图形的大小无关);当擦除的分数至少为$ \ varepsilon时,需要在图表表示的大小上进行一些线性的查询。我们的擦除弹性算法(对于没有擦除的特殊情况)是对标准属性测试模型中连接性的先前已知算法的改进,并且对接近性参数$ \ varepsilon $具有最佳依赖性。为了估算平均程度,我们的结果在模型中该计算任务的查询复杂性之间提供了“插值”,而在两个不同的情况下没有擦除:仅具有学位查询,Feige(Siam J.Comput。06)进行了调查,并通过Goldreich和Ron(随机构造。Algors.algors.algorms和Algorms和Algorth)和Al and and and and and and and and and and and and。 (ICALP`17)。我们以讨论我们的模型和工作提出的开放问题的讨论结束。

We investigate sublinear-time algorithms that take partially erased graphs represented by adjacency lists as input. Our algorithms make degree and neighbor queries to the input graph and work with a specified fraction of adversarial erasures in adjacency entries. We focus on two computational tasks: testing if a graph is connected or $\varepsilon$-far from connected and estimating the average degree. For testing connectedness, we discover a threshold phenomenon: when the fraction of erasures is less than $\varepsilon$, this property can be tested efficiently (in time independent of the size of the graph); when the fraction of erasures is at least $\varepsilon,$ then a number of queries linear in the size of the graph representation is required. Our erasure-resilient algorithm (for the special case with no erasures) is an improvement over the previously known algorithm for connectedness in the standard property testing model and has optimal dependence on the proximity parameter $\varepsilon$. For estimating the average degree, our results provide an "interpolation" between the query complexity for this computational task in the model with no erasures in two different settings: with only degree queries, investigated by Feige (SIAM J. Comput. `06), and with degree queries and neighbor queries, investigated by Goldreich and Ron (Random Struct. Algorithms `08) and Eden et al. (ICALP `17). We conclude with a discussion of our model and open questions raised by our work.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源