论文标题
Adabins:使用自适应箱的深度估计
AdaBins: Depth Estimation using Adaptive Bins
论文作者
论文摘要
我们解决了从单个RGB输入图像估算高质量密集深度图的问题。我们从基线编码器卷积神经网络体系结构开始,并提出一个问题,即信息的全球处理如何有助于改善整体深度估计。为此,我们提出了一个基于变压器的体系结构块,该块将深度范围分为垃圾箱,其中心值每个图像可自适应地估计。最终深度值估计为垃圾箱中心的线性组合。我们称我们的新构建块Adabins。我们的结果表明,在所有指标上的几个流行深度数据集上,对最新的最新技术的决定性改进。我们还通过消融研究验证了所提出的块的有效性,并提供了新的最先进模型的代码和相应的预训练权重。
We address the problem of estimating a high quality dense depth map from a single RGB input image. We start out with a baseline encoder-decoder convolutional neural network architecture and pose the question of how the global processing of information can help improve overall depth estimation. To this end, we propose a transformer-based architecture block that divides the depth range into bins whose center value is estimated adaptively per image. The final depth values are estimated as linear combinations of the bin centers. We call our new building block AdaBins. Our results show a decisive improvement over the state-of-the-art on several popular depth datasets across all metrics. We also validate the effectiveness of the proposed block with an ablation study and provide the code and corresponding pre-trained weights of the new state-of-the-art model.