论文标题

在4D $ \ MATHCAL {n} = 1 $ scfts中的长多重对交叉对称性

Crossing Symmetry for Long Multiplets in 4D $\mathcal{N}=1$ SCFTs

论文作者

Buric, Ilija, Schomerus, Volker, Sobko, Evgeny

论文摘要

在这项工作中,我们在4D $ \ MATHCAL {N} = 1 $ scfts中构建了两个长和两个BPS运算符的混合相关器的交叉对称方程。此处介绍的分析说明了我们的一般组理论方法如何应用超级符号代数的长超级块和张量结构来提供明确的现成表达式。在手头的情况下,我们获得了相关OPE系数的四个交叉对称方程的系统。这四个方程中的一个与Li,Meltzer和Stergiou限制到长多重组的超级部分组成的方程相吻合。其他三个方程是新的,它们在同一OPE数据上提供了强大的其他约束。

In this work we construct the crossing symmetry equations for mixed correlators of two long and two BPS operators in 4D $\mathcal{N}=1$ SCFTs. The analysis presented here illustrates how our general group theoretic approach to long superblocks and tensor structures of superconformal algebras can be applied to give explicit ready-to-use expressions. In the case at hand, we obtain a system of four crossing symmetry equations for the relevant OPE coefficients. One of these four equations coincides with the equation found and analysed by Li, Meltzer and Stergiou by restricting to the superprimary component of the long multiplets. The other three equations are new and they provide powerful additional constraints on the same OPE data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源