论文标题

关于可解决的晶格模型的自由能

On the Free Energy of Solvable lattice Models

论文作者

Gepner, Doron

论文摘要

我们猜想在面部周围(IRF)二维晶格模型周围的可溶解相互作用的反转关系。我们基于安萨兹(Ansatz),以供作者在90年代所描述的可保险化。我们在模型的四个主要制度中解决了这些反转关系,以在这些制度中赋予模型的自由能。我们在硬六边形模型的自由能的计算中使用了巴克斯特的方法。我们认为,这些结果是相当笼统的,大多数已知的IRF模型共享。我们的结果同样适用于可解决的顶点模型。使用自由能的表达式,我们计算了临界指数$α$,并从中计算出固定点共形场理论(CFT)中扰动(热)操作员的尺寸。我们表明,它与coset $ {\ cal o}/{\ cal g} $或$ {\ cal g}/{\ cal o} $匹配,其中$ \ cal o $是用于定义模型的原始CFT,$ \ cal g $是一个不知所措的CFT,这是一个不知名的CFT,取决于该机构。这与Huse和Jimbo等人的此类模型的已知示例一致。

We conjecture the inversion relations for thermalized solvable interaction round the face (IRF) two dimensional lattice models. We base ourselves on an ansatz for the Baxterization described by the author in the 90's. We solve these inversion relations in the four main regimes of the models, to give the free energy of the models, in these regimes. We use the method of Baxter in the calculation of the free energy of the hard hexagon model. We believe these results to be quite general, shared by most of the known IRF models. Our results apply equally well to solvable vertex models. Using the expression for the free energy we calculate the critical exponent $α$, and from it the dimension of the perturbing (thermal) operator in the fixed point conformal field theory (CFT). We show that it matches either the coset ${\cal O}/{\cal G}$ or ${\cal G}/{\cal O}$, where $\cal O$ is the original CFT used to define the model and $\cal G$ is some unknown CFT, depending on the regime. This agrees with known examples of such models by Huse and Jimbo et al.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源