论文标题

21厘米全球实验的贝叶斯噪声波校准

Bayesian noise wave calibration for 21-cm global experiments

论文作者

Roque, I. L. V., Handley, W. J., Razavi-Ghods, N.

论文摘要

从“宇宙黎明”中检测Millikelvin级信号需要前所未有的灵敏度和系统校准。我们报告了一种新型校准算法背后的理论,该算法是由边缘协作引入的形式主义开发的,用于21 cm实验。通过合并贝叶斯框架和机器学习技术,例如使用贝叶斯证据来确定数据支持的校准参数的频率变化水平,考虑到校准参数支持的相关性在确定基于Conjugate-Prior的方法时,可以在快速的Algorith中使用校准参数,以确定校准参数之间的相关性。在使用各种复杂性的经验数据模型的自通测试中,我们的方法用于校准50 $ω$环境温度负载。校准解决方案和负载的测量温度之间的RMS误差均为8 mk,均在1 $σ$噪声水平之内。尽管此处描述的方法更适用于全局21-CM实验,但它们可以轻松地适应并应用于其他应用程序,包括HERA和SKA等望远镜。

Detection of millikelvin-level signals from the 'Cosmic Dawn' requires an unprecedented level of sensitivity and systematic calibration. We report the theory behind a novel calibration algorithm developed from the formalism introduced by the EDGES collaboration for use in 21-cm experiments. Improvements over previous approaches are provided through the incorporation of a Bayesian framework and machine learning techniques such as the use of Bayesian evidence to determine the level of frequency variation of calibration parameters that is supported by the data, the consideration of correlation between calibration parameters when determining their values and the use of a conjugate-prior based approach that results in a fast algorithm for application in the field. In self-consistency tests using empirical data models of varying complexity, our methodology is used to calibrate a 50 $Ω$ ambient-temperature load. The RMS error between the calibration solution and the measured temperature of the load is 8 mK, well within the 1$σ$ noise level. Whilst the methods described here are more applicable to global 21-cm experiments, they can easily be adapted and applied to other applications, including telescopes such as HERA and the SKA.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源