论文标题

使用尺寸偏见和广义零偏置耦合的随机总和的伽马,高斯和泊松近似值

Gamma, Gaussian and Poisson approximations for random sums using size-biased and generalized zero-biased couplings

论文作者

Daly, Fraser

论文摘要

令$ y = x_1+\ cdots+x_n $是随机数的可交换随机变量的总和,其中随机变量$ n $独立于$ x_j $,而$ x_j $来自Tallis(1962)引入的广义多项式模型。这放松了$ x_j $是独立的经典假设。当随机变量$ x_j $中心或$ n $具有POISSON分布时,我们使用零偏置的耦合及其概括在$ y $的近似值中给出明确的错误界限。我们进一步建立了一个明确的限制,即通过伽玛分布在$ y $的近似值中,对于$ n $是泊松的特殊情况。最后,我们简要评论了使用尺寸偏见的耦合的类似泊松近似结果。独立$ x_j $的特殊情况在整个过程中都受到特别关注。除了建立超出独立环境的结果外,我们的边界在独立案例中具有已知结果具有竞争力。

Let $Y=X_1+\cdots+X_N$ be a sum of a random number of exchangeable random variables, where the random variable $N$ is independent of the $X_j$, and the $X_j$ are from the generalized multinomial model introduced by Tallis (1962). This relaxes the classical assumption that the $X_j$ are independent. We use zero-biased coupling and its generalizations to give explicit error bounds in the approximation of $Y$ by a Gaussian random variable in Wasserstein distance when either the random variables $X_j$ are centred or $N$ has a Poisson distribution. We further establish an explicit bound for the approximation of $Y$ by a gamma distribution in stop-loss distance for the special case where $N$ is Poisson. Finally, we briefly comment on analogous Poisson approximation results that make use of size-biased couplings. The special case of independent $X_j$ is given special attention throughout. As well as establishing results which extend beyond the independent setting, our bounds are shown to be competitive with known results in the independent case.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源